Math, asked by siddharthkumar308310, 1 day ago

please koi copy me ye question kar k de do yar bhout der se try kr rha hu wrong answer aara h har bar​

Attachments:

Answers

Answered by Anonymous
3

Step-by-step explanation:

Given that,

  \displaystyle\longrightarrow{\Bigg[\dfrac{  \big({11} \big)^{  \frac{2}{4} } }{ { \big(11 \big)}^{ \frac{3}{2} } }\Bigg] }^{ \frac{1}{4} +  \frac{2}{3}  }\\

By applying following exponential law . . .

  \rm\implies \dfrac{A^{x} }{ {A}^{y} }  = { \big(A \big) }^{x - y}  \\

. . . We get,

\displaystyle\longrightarrow{\Bigg[{  \big({11} \big)^{  \frac{2}{4}  -  \frac{3}{2} } }\Bigg] }^{ \frac{1}{4} +  \frac{2}{3}  }\\

Now simplifying this,

\displaystyle\longrightarrow{\Bigg[{  \big({11} \big)^{  \frac{2 - 6}{4}  } }\Bigg] }^{ \frac{8 + 3}{12}}\\

\displaystyle\longrightarrow{\Bigg[{  \big({11} \big)^{  \frac{ - 4}{4}  } }\Bigg] }^{ \frac{11}{12}}\\

\displaystyle\longrightarrow{\Bigg[{  \big({11} \big)^{   - 1  } }\Bigg] }^{ \frac{11}{12}}\\

Final answer is,

\displaystyle\longrightarrow{\Big[{ {11}}\Big] }^{ -  \frac{11}{12}}\\

Similar questions