Math, asked by yashchaudhay1, 2 months ago

please koi help kar do mari please Q.25​

Attachments:

Answers

Answered by Anonymous
14

Step-by-step explanation:

(i) See first imae

Given :-

 \angle{POR} :  \angle{ROQ} = 5 :7

Let  \:  \angle{POR  } = 5x

and  \:  \angle{ROQ }= 7x

Now,

\angle{POR} +  \angle{ROQ} = 180° \: (linear \: pair \: of \: angles)

5x + 7x = 180°

12x = 180°

x =  \frac{180°}{12}

x = 15°

\angle{POR} =5x = 5 \times 15 =75°

\angle{ROQ} = 7x  = 7 \times 15 = 105°

Now,

∠POS=∠ROQ=105°  (Vertically \:  opposite  \: angles)

and ∠SOQ=∠POR=75°   (Vertically \:  opposite \:  angles)

(ii) See second image

According to the figure,

∠EOB,∠BOD and ∠DOF are the angles on a straight line.

Where,

∠DOF = 50°

and ∠BOD = 90°

thus \: ∠EOB+∠BOD+∠DOF=180° \: (linear \: pair \: of \: angles)

x + 90°+50°=180°

x + 140°=180°

x  =  180°- 140°

x = 40°

\scriptsize{x°=y°(Vertically  \: opposite  \: angles \:  are  \: equal)}

y = 40°

\scriptsize{z° =  \angle{DOF} \: ( Vertically  \: opposite  \: angles \:  are  \: equal)}

z = 50°

 \scriptsize{v = ∠BOD°  \: (Vertically  \: opposite \: angles \: are \: equal)}

v = 90°

Hence x = 40°, y = 40°, z = 50°, v = 90°

(iii) See third image

We know that the sum of all the angles in a straight line is 180°

\scriptsize{∠BOC+∠COD+∠AOD=180° (linear \: pair \: of \: angles)}

\scriptsize(x+20)+x+(x+10)=180°

x+20+x+x+10=180°

3x+30=180°

3x=180° - 30

3x = 150°

x =  \frac{150°}{3}

x = 50°

∠AOD=x+10°

=50°+10°

= 60°

∠BOC=x+20°

=50°+20°

= 70°

\scriptsize∴∠COD=50°,∠AOD=60°and  \: ∠BOC =70°

(iv) See forth image

We have two straight lines PQ and RS.

And,∠ POT = 75°

\scriptsize{So,∠ POR + ∠ POT + ∠ TOS = 180°(Linear \: pair \: angles)}

Now substitute the given values,

we get -

4b + 75° + b = 180°

5b  = 180° -  75°

5b  = 105°

b =  \frac{ 105°}{5}

b = 21°

And, ∠ POR = 4b

∠ POR  = 4 \times 21

∠ POR = 84°

\scriptsize∠ SOQ =∠ POR   (vertically  \: opposite  \: angles)

\angle{SOQ}  = 84°

\because \angle{SOQ}  = a

\therefore \:  \: a = 84°

∠ QOR = ∠ POS (vertically \:  opposite  \: angles)

Substitute the values, we get-

2c = 75° + 21°

2c = 96°

c =  \frac{96}{2}

c = 48°

So,a = 84°, b = 21°, c = 48°

I hope it is helpful

Attachments:
Similar questions