Math, asked by Coolcat21, 4 months ago

Please koi solve Kar do please ​

Attachments:

Answers

Answered by Anonymous
6

Answer:

\huge\colorbox{yellow}{Solution\:-}

Let \:  \frac{1}{x + 2y} = u \:  \: and \:  \:  \frac{5}{3x - 2y} = v

Then, the given system of equation becomes

 \frac{u}{2} +  \frac{5v}{3} =  \frac{ - 3}{2}

 =  >  \frac{3u + 10v}{6} =  \frac{ - 3 \times 6}{3}

 =  > 3u + 10v =  - 9 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: i)

 \frac{5u}{4} -  \frac{3v}{5} =  \frac{61}{60}

And,

 \frac{25u - 12v}{20} =  \frac{61}{60}

 =  > 25u - 12v =  \frac{61}{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ii)

Multiplying equation I) by 12 and equation II) by 10, we get

36u + 120v =  - 108 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: iii)

250u - 120v =  \frac{610}{3} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: iv)

Adding equation III) and equation IV), we get

36u + 25v =  \frac{610}{3} - 108

286u =  \frac{610 - 324}{3}

286u =  \frac{280}{3}

u =  \frac{1}{3}

Putting u = 1/3 in equation I) we get

3 \times  \frac{1}{3}  + 10v =  - 9

1 + 10v =  - 9

10v =  - 9 - 1

v =  \frac{ - 10}{10} =  - 1

Now,

u =  \frac{1}{x + 2y}

 \frac{1}{x + y}  =  \frac{1}{3}

x + 2y = 3

And,

v =  \frac{1}{3x - 2y}

 \frac{1}{3x - 2y} =  - 1

3x - 2y =  - 1

Putting x = 1/3 in equation v) we get

 \frac{1}{2} + 2y = 3

2y = 3 -  \frac{1}{2}

2y =  \frac{6 - 1}{2}

y =  \frac{5}{4}

Hence, we conclude that

\boxed{\pink{ \: x =  \frac{1}{2}}}

\boxed{\pink{ \: y =  \frac{5}{4}}}

\huge\colorbox{yellow}{Thank\:You}

Answered by Anonymous
3

Answer:

Hy

Whats youre name

I'M REEN

NICE to meet you

Have a good day

Similar questions