Math, asked by biswajeet1510, 10 months ago

please let me know the answer​

Attachments:

Answers

Answered by CharmingPrince
1

Answer:

Given:

\dfrac{1}{1+tan^2\theta} + \dfrac{1}{1+cot^2\theta} = ?

Solution:

\implies \dfrac{1}{1+tan^2 \theta} + \dfrac{1}{1+cot^2 \theta}

\implies \dfrac{1}{sec^2 \theta} + \dfrac{1}{cosec^2\theta}

\implies cos^2\theta + sin ^2 \theta

\boxed{\implies{\boxed{ = 1}}}

Identities used:

1️⃣ 1 + tan^2 \theta = sec^2 \theta

2️⃣ 1 + cot^2 \theta = cosec^2 \theta

3️⃣ cosec^2 \theta = \dfrac{1}{cos^2 \theta}

4️⃣ sec^2 \theta = \dfrac{1}{sin^2 \theta}

5️⃣ sin^2 \theta + \cos^2\theta = 1

__________________________

Similar questions