Math, asked by MeemansaGaur, 2 months ago

Please let me know this solution ...Thank You! ​

Attachments:

Answers

Answered by rishu6845
2

Step-by-step explanation:

a =  \dfrac{ \sqrt{5}  + 1}{ \sqrt{5} - 1 }  \\  =  \dfrac{( \sqrt{5}  + 1)(  \sqrt{5}  + 1)  }{( \sqrt{5} - 1)( \sqrt{5}  + 1) }  \\  =  \dfrac{ {( \sqrt{5} + 1) }^{2} }{ { (\sqrt{5}) }^{2} -  {(1)}^{2}  }  \\  =  \dfrac{ { (\sqrt{5}) }^{2}  +  {(1)}^{2} + 2( \sqrt{5} )(1) }{5 - 1}  \\  =  \dfrac{5 + 1 + 2 \sqrt{5} }{4}  \\  =  \dfrac{6 + 2 \sqrt{5} }{4}  \\  =  \dfrac{2(3 +  \sqrt{5}) }{4}  \\ a =  \dfrac{3 +  \sqrt{5} }{2}  \\ similarly \\ b =  \dfrac{ \sqrt{5}  - 1}{ \sqrt{5} + 1 }  \\ b =  \dfrac{3  -   \sqrt{5} }{2}  \\  {a}^{2}  =  {( \frac{3 +  \sqrt{5} }{2}) }^{2}  \\  =  \dfrac{9 + 5 + 2 \sqrt{5} }{4}  \\  =  \dfrac{14 +2 \sqrt{5}  }{4}  \\ similarly \\  {b}^{2}  =  \dfrac{14 - 2 \sqrt{5} }{4}  \\ ab = ( \dfrac{3 +  \sqrt{5} }{2} ) \: ( \dfrac{3 -  \sqrt{5} }{2} )  \\ \\  =  \dfrac{ {(3)}^{2}  - { (\sqrt{5} )}^{2}  }{4}  \\  \\  =  \dfrac{9 - 5}{4}  \\ ab =  \dfrac{4}{4}  = 1

 {a}^{2}   +  {b}^{2}  =   {a}^{2} +  {b}^{2}    \\   \\ =  \dfrac{14 + 2 \sqrt{5} }{4}  +  \dfrac{14 - 2 \sqrt{5} }{4}  \\  \\  =  \dfrac{14 + 2 \sqrt{5} + 14 - 2 \sqrt{5}  }{4}   \\  \\  =  \dfrac{28}{4}  \\  \\  = 7 \\ now \\  \\  \dfrac{ {a}^{2}  + ab +  {b}^{2} }{ {a}^{2} - ab +  {b}^{2}  }   \\  \\  = \dfrac{ ({a}^{2} +  {b}^{2} )+ ab  } {( {a}^{2}  +  {b}^{2} )- ab }   \\ \\  =  \dfrac{7 + 1}{7 - 1}  \\  \\  =  \dfrac{8}{6}   \\ \\  =  \dfrac{4}{3}

Similar questions