please look at the attachement and solve the 3 questions asked
plaese
Attachments:
Answers
Answered by
0
1)loga- log b= log(a-b)
log a/b=log (a-b) WKT loga/b=loga-logb
a/b=a-b
a=-b²/1-b⇒b²/b-1
option a is correct
2)f(x)=log(1-x)/(1+x)
then f(1-x)/(1+x)
f(1-x)/(1+x)⇒log(1/1 - 1-x/1+x)
(1/1 +1-x/1+x)
log(1+x-1+x)/(1+x+1-x)
log(2x/2)⇒logx
option a is correct
log a/b=log (a-b) WKT loga/b=loga-logb
a/b=a-b
a=-b²/1-b⇒b²/b-1
option a is correct
2)f(x)=log(1-x)/(1+x)
then f(1-x)/(1+x)
f(1-x)/(1+x)⇒log(1/1 - 1-x/1+x)
(1/1 +1-x/1+x)
log(1+x-1+x)/(1+x+1-x)
log(2x/2)⇒logx
option a is correct
rajusetu:
1 C IS ANSWERE
Answered by
1
Log a / b = log (a - b)
a/b = a - b
a = ab - b²
a (b-1) = b²
a = b²/(b-1)
====================
f(x) = Log [ (1-x)/(1+x) ]
f( (1-x)/(1+x) ) = Log [ {1 - (1-x)/(1+x)} / { 1 + (1-x)/(1+x) } ]
= Log [ 2x / 2 ]
= Log x
===============
a/b = a - b
a = ab - b²
a (b-1) = b²
a = b²/(b-1)
====================
f(x) = Log [ (1-x)/(1+x) ]
f( (1-x)/(1+x) ) = Log [ {1 - (1-x)/(1+x)} / { 1 + (1-x)/(1+x) } ]
= Log [ 2x / 2 ]
= Log x
===============
Similar questions