Physics, asked by prema76, 1 month ago

please look at the attachment and give me answer with steps in a basic form I've just got admitted in 11th std​

if you are army then answer me

Attachments:

Answers

Answered by tessanna2003
0

Answer:

\frac{dy}{dx} = \frac{A}{x^{2} }  -\frac{1}{2x\sqrt{x} }

Explanation:

Given,

y = \frac{\sqrt{x}-A}{x} , which can be further simplified as

y = \frac{\sqrt{x}}{x} - \frac{A}{x}  =\frac{1}{\sqrt{x}} - \frac{A}{x}\\\\

y=x^{-\frac{1}{2} }  - Ax^{-1} \\\\

[Remember,\sqrt{x} can be represented as x^{\frac{1}{2} } , and also x^{-n} = \frac{1}{x^{n} }

On differentiating it w.r.t 'dx',

\frac{d(y)}{dx}= \frac{d}{dx} (x^{-\frac{1}{2} }  - Ax^{-1}) \\\\

Applying the formula, \frac{d(x^{n} )}{dx} = nx^{n-1}, we can solve it as follows:

\frac{d(y)}{dx} = -\frac{1}{2} x^{\frac{-1}{2}- 1 } - (-1)(A)(x^{-1-1)}

\frac{d(y)}{dx} = \frac{-1}{2} x^{\frac{-3}{2} } - (-Ax^{-2})

\frac{d(y)}{dx} = \frac{-1}{2x^{3/2} } + \frac{A}{x^{2} }

\frac{d(y)}{dx} = \frac{-1}{2\sqrt{x^{3} } } + \frac{A}{x^{2} }

\frac{d(y)}{dx} = \frac{-1 }{2x\sqrt{x} } + \frac{A}{x^{2} }

\frac{d(y)}{dx} = \frac{-x^{2} + 2x\sqrt{x} A}{2x^{3}\sqrt{x}  }

\frac{d(y)}{dx} = \frac{x (2A\sqrt{x} - x)}{2x^{3}\sqrt{x}  }

\frac{dy}{dx} = \frac{2A\sqrt{x} - x}{2x^{2} \sqrt{x} }

Further, on splitting the numerator, we get

\frac{dy}{dx} = \frac{A}{x^{2} }  -\frac{1}{2x\sqrt{x} }

Hope this helps!

Similar questions