Math, asked by deepthi2007, 1 month ago

please mark these answers fast friends
please friends​

Attachments:

Answers

Answered by Anonymous
32

Step-by-step explanation:

 \large  \rm\pink {\underline{ {  \blue{2. } \:  \: \green {Solution :-}}}}

   \rm{ \cot \theta =  \frac{base}{height}  =  \frac{q}{p} }

From Pythagoras theorem:-

 \rm (hypotenuse)^2 = (height)^2 + (base)^2

 \rm (hypotenuse)^2 = p^2 + q^2

 \rm hypotenuse =  \sqrt{p^2 + q^2}

 \rm sin \theta =  \frac{height }{hypotenuse}  =  \frac{p}{ \sqrt{ {p}^{2}  +  {q}^{2} } }

 \rm cos\theta =  \frac{base }{hypotenuse}  =  \frac{q}{ \sqrt{ {p}^{2}  +  {q}^{2} } }

 \rm LHS =   \frac{psin \theta \:  -  \: qcos \theta}{psin \theta \:   +  \: qcos \theta}

\rm \:  \:  =  \frac{p .\frac{p}{ \sqrt{ {p}^{2}  +  {q}^{2} } } \: -  \: q. \frac{q}{ \sqrt{ {p}^{2}  +  {q}^{2} } } }{p .\frac{p}{ \sqrt{ {p}^{2}  +  {q}^{2} } }   \:  +  \:  q. \frac{q}{ \sqrt{ {p}^{2}  +  {q}^{2} } } }

\rm \:  \:  =  \frac{\frac{ {p}^{2} }{ \sqrt{ {p}^{2}  +  {q}^{2} } } \: -  \: \frac{ {q}^{2} }{ \sqrt{ {p}^{2}  +  {q}^{2} } } }{\frac{ {p}^{2} }{ \sqrt{ {p}^{2}  +  {q}^{2} } }   \:  +  \:   \frac{ {q}^{2} }{ \sqrt{ {p}^{2}  +  {q}^{2} } } }

\rm \:  \:  =  \frac{\frac{ {p}^{2}  -  {q}^{2} }{ \sqrt{ {p}^{2}  +  {q}^{2} } }{ }{ } }{\frac{ {p}^{2}  + {q}^{2}  }{ \sqrt{ {p}^{2}  +  {q}^{2} } }}

\rm \:  \:  =  {\frac{ {p}^{2}  -  {q}^{2} }{  \cancel{\sqrt{ {p}^{2}  +  {q}^{2}}}}} \times {  \frac{  \:  \: \cancel{\sqrt{ {p}^{2}  +  {q}^{2} }  } }{ {p}^{2}  + {q}^{2}}}

 \rm =  \frac{ {p}^{2} -  {q}^{2}  }{{p}^{2}  +   {q}^{2}}

 \rm  = RHS

Attachments:
Answered by ItsMagician
9

\sf{ \cot \theta = \frac{base}{height} = \frac{q}{p} }

From Pythagoras theorem:-

\sf (hypotenuse)^2 = (height)^2 + (base)^2

\sf(hypotenuse)^2 = p^2 + q^2

\sf hypotenuse = \sqrt{p^2 + q^2}

\sf sin \theta = \frac{height }{hypotenuse} = \frac{p}{ \sqrt{ {p}^{2} + {q}^{2} } }

\sf cos\theta = \frac{base }{hypotenuse} = \frac{q}{ \sqrt{ {p}^{2} + {q}^{2} } }

\sf LHS = \frac{psin \theta \: - \: qcos \theta}{psin \theta \: + \: qcos \theta}

\sf\large \: \: = \frac{p .\frac{p}{ \sqrt{ {p}^{2} + {q}^{2} } } \: - \: q. \frac{q}{ \sqrt{ {p}^{2} + {q}^{2} } } }{p .\frac{p}{ \sqrt{ {p}^{2} + {q}^{2} } } \: + \: q. \frac{q}{ \sqrt{ {p}^{2} + {q}^{2} } } }

\sf\large \: \: = \frac{\frac{ {p}^{2} }{ \sqrt{ {p}^{2} + {q}^{2} } } \: - \: \frac{ {q}^{2} }{ \sqrt{ {p}^{2} + {q}^{2} } } }{\frac{ {p}^{2} }{ \sqrt{ {p}^{2} + {q}^{2} } } \: + \: \frac{ {q}^{2} }{ \sqrt{ {p}^{2} + {q}^{2} } } }

\sf\large \: \: = \frac{\frac{ {p}^{2} - {q}^{2} }{ \sqrt{ {p}^{2} + {q}^{2} } }{ }{ } }{\frac{ {p}^{2} + {q}^{2} }{ \sqrt{ {p}^{2} + {q}^{2} } }}

\sf\large \: \: = {\frac{ {p}^{2} - {q}^{2} }{ \cancel{\sqrt{ {p}^{2} + {q}^{2}}}}} \times { \frac{ \: \: \cancel{\sqrt{ {p}^{2} + {q}^{2} } } }{ {p}^{2} + {q}^{2}}}

\sf\large = \frac{ {p}^{2} - {q}^{2} }{{p}^{2} + {q}^{2}}

Similar questions