Math, asked by priyankabala2003, 7 months ago

please mention all the steps....​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

y =  \frac{ \sin^{2} (x) }{1 +  \cos ^{2} (x) }

 =  >  \frac{dy}{dx}  =  \frac{(1 +  \cos^{2} (x))  \frac{d}{dx}( \sin^{2} (x))   - ( \sin^{2} (x) )\frac{d}{dx} (1 +  \cos^{2} (x) )}{(1 +  \cos^{2} (x))^{2}  }

 =  >  \frac{dy}{dx}  =  \frac{(1 +  \cos^{2} (x)) \sin(2x)  - (  -  \sin(2x) ) \sin^{2} (x)  }{ {(1 +  \cos^{2} (x) )}^{2} }

 =  >  \frac{dy}{dx}  =  \frac{(1 +  \cos^{2} (x)) \sin(2x)  + (\sin(2x) ) \sin^{2} (x)  }{ {(1 +  \cos^{2} (x) )}^{2} }

 =  >  \frac{dy}{dx}  =  \frac{(1 +  \cos^{2} (x)) \sin(2x)  + (\sin(2x) )(1 -  \cos^{2} (x) )  }{ {(1 +  \cos^{2} (x) )}^{2} }

 =  >  \frac{dy}{dx}  =  \frac{ \sin(2x)  +  \sin(2x)  \cos ^{2} (x)  +  \sin(2x)  -  \sin(2x) \cos^{2} (x)  }{(1 +  \cos^{2}  (x))^{2}  }

 =  >  \frac{dy}{dx}  =  \frac{2 \sin(2x) }{ {(1 +  \cos^{2} (x)) }^{2} }

Similar questions