Math, asked by saprasanna7, 2 months ago

Please need the answer.

Attachments:

Answers

Answered by Anonymous
5

Given

⇒ SinФ + CosФ = √2CosФ

To Find

⇒The value of TanФ

Now Take

⇒ SinФ + CosФ = √2CosФ

⇒(SinФ + CosФ )/CosФ = √2

⇒SinФ/CosФ + CosФ/CosФ = √2

We Know That

⇒TanФ = SinФ/CosФ

⇒TanФ + 1 = √2

⇒ TanФ = √(2) -1

Answer

⇒ TanФ = √(2) -1

Option (a) is correct

                                                                               

More identities of TRI

⇒ TanФ = SinФ/CosФ

⇒ CotФ = CosФ/SinФ

⇒ Sin²Ф + Cos²Ф = 1

⇒ tan²Ф + 1 = Sec²Ф

⇒1 + Cot²Ф = Cosec²Ф

⇒Sin(a + b)= SinaCosb + cosaSinb

⇒Cos(a+ b)= CosaCosb - SinaSinb

⇒Tan(a+b) = (Tana + Tanb)/(1-TanaTanb)

⇒Sin2a = 2sinaCosa

⇒Cos2a = Cos²a - Sin²a = 1 - 2Sin²a =

Similar questions