Please need the answer.
Attachments:
Answers
Answered by
5
Given
⇒ SinФ + CosФ = √2CosФ
To Find
⇒The value of TanФ
Now Take
⇒ SinФ + CosФ = √2CosФ
⇒(SinФ + CosФ )/CosФ = √2
⇒SinФ/CosФ + CosФ/CosФ = √2
We Know That
⇒TanФ = SinФ/CosФ
⇒TanФ + 1 = √2
⇒ TanФ = √(2) -1
Answer
⇒ TanФ = √(2) -1
Option (a) is correct
More identities of TRI
⇒ TanФ = SinФ/CosФ
⇒ CotФ = CosФ/SinФ
⇒ Sin²Ф + Cos²Ф = 1
⇒ tan²Ф + 1 = Sec²Ф
⇒1 + Cot²Ф = Cosec²Ф
⇒Sin(a + b)= SinaCosb + cosaSinb
⇒Cos(a+ b)= CosaCosb - SinaSinb
⇒Tan(a+b) = (Tana + Tanb)/(1-TanaTanb)
⇒Sin2a = 2sinaCosa
⇒Cos2a = Cos²a - Sin²a = 1 - 2Sin²a =
Similar questions