Math, asked by tchaitanya2005oxerfq, 9 months ago

please no fake anwers Or other than topi.c..​

Attachments:

Answers

Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\frac{p \:sin \:  \theta - q \: cos \:  \:  \theta}{p \: sin \:  \theta + q \: cos \:  \theta}  =  \frac{ {p}^{2} -  {q}^{2}  }{ {p}^{2}  +  {q}^{2} }}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline\bold{Given :}} \\  \tt:  \implies tan \:  \theta =  \frac{p}{q}  \\  \\ \red{\underline\bold{To \:Find:}} \\  \tt:  \implies  \frac{p \:sin \:  \theta - q \: cos \:  \:  \theta}{p \: sin \:  \theta + q \: cos \:  \theta}  =

• According to given question :

 \tt \circ \: tan \:  \theta =  \frac{p}{q} =  \frac{p}{b}   \\  \\  \tt \circ \: Perpendicular = p \\  \\  \tt \circ \: Base = q  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \\ \tt:  \implies  {h}^{2}  =  {p}^{2}  +  {q}^{2}  \\  \\ \tt:  \implies h =  \sqrt{ {p}^{2} +  {q}^{2}  }  \\  \\  \bold{For \: finding \: value : } \\ \tt:  \implies \frac{p \:sin \:  \theta - q \: cos \:  \:  \theta}{p \: sin \:  \theta + q \: cos \:  \theta} \\  \\ \tt:  \implies \huge{\frac{p \times  \frac{p}{h} -  q \times \frac{b}{h}  }{p \times  \frac{p}{h}  +q \times  \frac{b}{h}  }}  \\  \\ \tt:  \implies  \huge{\frac{ \frac{p \times p}{ \sqrt{ {p}^{2}  +  {q}^{2} } }  -  \frac{q \times q}{ \sqrt{ {p}^{2} +  {q}^{2}  } }  }{ \frac{p \times p}{ \sqrt{ {p}^{2} +  {q}^{2}  }  }+  \frac{q \times q}{ \sqrt{{p}^{2}  +  {q}^{2} }} } }\\  \\ \tt:  \implies  \huge{\frac{ \frac{ {p}^{2}  -  {q}^{2} }{ \sqrt{ {p}^{2} +  {q}^{2}  } } }{ \frac{ {p}^{2}  +  {q}^{2}  }{ \sqrt{ {p}^{2} +  {q}^{2}  } } } } \\  \\ \tt:  \implies   \frac{ {p}^{2} -  {q}^{2}  }{ {p}^{2}  +  {q}^{2} }  \times  \frac{ \sqrt{ {p}^{2}  +  {q}^{2} } }{ \sqrt{ {p}^{2}  +  {q}^{2} }  }  \\  \\ \tt:  \implies  \frac{ {p}^{2}  -  {q}^{2} }{ {p}^{2}  +  {q}^{2}  } \\  \\  \green{\tt \therefore \frac{p \:sin \:  \theta - q \: cos \:  \:  \theta}{p \: sin \:  \theta + q \: cos \:  \theta}  =  \frac{ {p}^{2} -  {q}^{2}  }{ {p}^{2}  +  {q}^{2} } }

Answered by ғɪɴɴвαłσℜ
3

Aɴꜱᴡᴇʀ

➜ Option C

_________________

Gɪᴠᴇɴ

 \tt tan \: \theta = \frac{p}{q}

_________________

ᴛᴏ ꜰɪɴᴅ

 \tt \large\frac{p \:sin \: \theta - q \: cos \: \: \theta}{p \: sin \: \theta + q \: cos \: \theta}

_________________

Sᴛᴇᴘꜱ

☞ As per the question

\begin{lgathered}\tt  \: tan \: \theta = \frac{p}{q} = \frac{p}{b} \\ \\ \tt  \: Perpendicular = p \\ \\ \tt \: Base = q \\ \\ \bold{with \: the \: use \: of} \\ \\  \tt \leadsto {h}^{2} = {p}^{2} + {b}^{2} \\ \\ \tt \leadsto {h}^{2} = {p}^{2} + {q}^{2} \\ \\ \tt \leadsto h = \sqrt{ {p}^{2} + {q}^{2} } \\ \\ \bold{now \: fining \: the \:values  }  \\ \\ \tt \dashrightarrow\frac{p \:sin \: \theta - q \: cos \: \: \theta}{p \: sin \: \theta + q \: cos \: \theta} \\ \\ \tt\dashrightarrow{\frac{p \times \frac{p}{h} - q \times \frac{b}{h} }{p \times \frac{p}{h} +q \times \frac{b}{h} }} \\ \\ \tt \dashrightarrow{\frac{ \frac{p \times p}{ \sqrt{ {p}^{2} + {q}^{2} } } - \frac{q \times q}{ \sqrt{ {p}^{2} + {q}^{2} } } }{ \frac{p \times p}{ \sqrt{ {p}^{2} + {q}^{2} } }+ \frac{q \times q}{ \sqrt{{p}^{2} + {q}^{2} }} } }\\  \\ \tt\dashrightarrow{\frac{ \frac{ {p}^{2} - {q}^{2} }{ \sqrt{ {p}^{2} + {q}^{2} } } }{ \frac{ {p}^{2} + {q}^{2} }{ \sqrt{ {p}^{2} + {q}^{2} } } } } \\ \\ \tt \dashrightarrow \frac{ {p}^{2} - {q}^{2} }{ {p}^{2} + {q}^{2} } \times \frac{ \sqrt{ {p}^{2} + {q}^{2} } }{ \sqrt{ {p}^{2} + {q}^{2} } } \\ \\ \tt \dashrightarrow \frac{ {p}^{2} - {q}^{2} }{ {p}^{2} + {q}^{2} } \\ \\ \pink{\tt \dashrightarrow \frac{p \:sin \: \theta - q \: cos \: \: \theta}{p \: sin \: \theta + q \: cos \: \theta} = \frac{ {p}^{2} - {q}^{2} }{ {p}^{2} + {q}^{2} } }\end{lgathered}

__________________________________

Similar questions