Math, asked by ritiksh, 9 months ago

please no spam its urgent​

Attachments:

Answers

Answered by Anonymous
32

\Large{\underline{\underline{\mathfrak{\green{\bf{Solution}}}}}}

\Large{\underline{\sf{\bf{Given}}}}

\mapsto\sf{\:\left(a+\dfrac{1}{a}\right)^2\:=\:3............(1)}

\Large{\underline{\sf{\bf{Find}}}}

\mapsto\sf{\:\left(a^3+\dfrac{1}{a^3}\right)}

\Large{\underline{\underline{\mathfrak{\green{\bf{Explanation}}}}}}

Given,

\mapsto\sf{\:\left(a+\dfrac{1}{a}\right)^2\:=\:3}

\:\:\:\:\:\small\sf{\:( x+y)^2=x^2+y^2+2xy}

\mapsto\sf{\:\left(a^2+\dfrac{1}{a^2}+2\times a\times \dfrac{1}{a}\right)\:=\:3}

\mapsto\sf{\:\left(a^2+\dfrac{1}{a^2}+2\right)\:=\:3}

\mapsto\sf{\:\left(a^2+\dfrac{1}{a^2}\right)\:=\:3\:-\:2}

\mapsto\sf{\:\left(a^2+\dfrac{1}{a^2}\right)\:=\:1.........(2)}

_____________________

Again,

we have,

\:\:\:\:\:\small\sf{\:( x^3+y^3)=(x+y)(x^2+y^2-xy)}

\mapsto\sf{\:\left(a^3+\dfrac{1}{a^3}\right)}

\sf{\:=(a+\dfrac{1}{a})(a^2+\dfrac{1}{a^2}-a\times \dfrac{1}{a})}

\sf{\:=(a+\dfrac{1}{a})(a^2+\dfrac{1}{a^2}-1)}

\:\:\:\:\:\small\sf{\:\left( Keep \:value\:by\:(1)\:and\:(2)\right)}

\sf{\:=(\sqrt{3})(1-1)}

\sf{\:=0\times (\sqrt{3})}

\sf{\bf{\:=0\:\:\:\:\:Ans}}

______________________

Answered by tahseen619
13

Given:

( a+\frac{1}{a})^{2}  =3

To prove:

a^{3} +\frac{1}{a^3} =0

Solution:

\\\\a+\frac{1}{a}= \sqrt{3}             \: \: ------------(i) \\\\\: \: ( a+\frac{1}{a})^{3}  =(\sqrt{3  } )^3 \: \:  [cubing\: both\: side  ]\\\\a^3 + \frac{1}{a^3} +3.a.\frac{1}{a} (a+\frac{1}{a} )= 3\sqrt{3} \\\\a^3 + \frac{1}{a^3} +3(\sqrt{3} )=3\sqrt{3} \:\: [ from \: (i) ] \\\\a^3 + \frac{1}{a^3}  = 3\sqrt{3}-3\sqrt{3}\\\\a^3 + \frac{1}{a^3} = 0\\

Hence proved

Similar questions