Please please answer fast
Attachments:
Answers
Answered by
9
Answer:
- x² + y² = 97
Given:
- ( x - y ) = 5
- xy = 36
To find:
- The value of x² + y²
Solution:
We know that :
- (x - y)² = x² - 2xy + y²
Now :
x² + y² = x² - 2xy + y² + 2xy
x² + y² = (x - y)² + 2xy
So, by substituting the values of (x - y) and 2xy, we get:
x² + y² = (5)² + 2(36)
[ (x - y) = 5 and xy = 36 ]
x² + y² = 25 + 72
x² + y² = 97
Concepts Used:
- (x - y)² = x² - 2xy + y²
- Substitution of values
- Expanding of brackets
Extra - Information:
(a + b)² = a² + 2ab + b²
a² – b² = (a + b)(a – b)
(x + a)(x + b) = x² + (a + b) x + ab
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
(a + b)³ = a³ + b³ + 3ab (a + b)
(a – b)³ = a³ – b³ – 3ab (a – b)
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² – ab – bc – ca)
If a + b + c = 0, then a³ + b³ + c³ = 3abc
Answered by
0
Answer:
the above given answer is good so please follow that
Similar questions