Math, asked by shreyamishra8374, 7 months ago

Please please answer fast ​

Attachments:

Answers

Answered by Anonymous
9

\red\bigstarAnswer:

  • x² + y² = 97

\pink\bigstar Given:

  • ( x - y ) = 5
  • xy = 36

\blue\bigstarTo find:

  • The value of x² + y²

\green\bigstar Solution:

\starWe know that :

  • (x - y)² = x² - 2xy + y²

\starNow :

x² + y² = x² - 2xy + y² + 2xy

\implies x² + y² = (x - y)² + 2xy

So, by substituting the values of (x - y) and 2xy, we get:

x² + y² = (5)² + 2(36)

[ \because (x - y) = 5 and xy = 36 ]

\implies x² + y² = 25 + 72

\implies\boxed{{x}^{2}+ {y}^{2} \: = \: 97}

\thereforex² + y² = 97

\red\bigstar Concepts Used:

  • (x - y)² = x² - 2xy + y²
  • Substitution of values
  • Expanding of brackets

\pink\bigstar Extra - Information:

\hookrightarrow (a + b)² = a² + 2ab + b²

\hookrightarrow a² – b² = (a + b)(a – b)

\hookrightarrow (x + a)(x + b) = x² + (a + b) x + ab

\hookrightarrow (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

\hookrightarrow (a + b)³ = a³ + b³ + 3ab (a + b)

\hookrightarrow (a – b)³ = a³ – b³ – 3ab (a – b)

\hookrightarrow a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² – ab – bc – ca)

\hookrightarrow If a + b + c = 0, then a³ + b³ + c³ = 3abc

Answered by harinatraj20
0

Answer:

the above given answer is good so please follow that

Similar questions