Math, asked by shreyamishra8374, 8 months ago

Please please answer fast ​

Attachments:

Answers

Answered by ananya1368
3

Answer:

Formula

X²-y²

(x+y) ²-2xy

Solution

X²-y²

(x+y) ²-2xy

15²-2×54

225-108

117

Step-by-step explanation:

Hope it helps.....

Answered by Anonymous
14

\blue\bigstarAnswer:

\sf\: \boxed  {\sf {x}^{2}  \:  -  \:  {y}^{2}  \:  =  \:  \tt \: </u>\<u>p</u><u>m</u><u> </u><u>45}

\red\bigstar Given:

  • ( x + y ) = 15
  • xy = 54

\pink\bigstar To Find:

  • x² - y²

\blue\bigstar Solution:

We know that :

  • (x + y)² = x² + 2xy + y²

By substituting the given values, we get :

 \sf \:  {(15 )}^{2}  \:  =  \:  {x}^{2}  \:  +  \:  {y}^{2}  \:  + 2(54)

 \sf\implies \: 225 \:  =  \:  {x}^{2} \:  +  \:  {y}^{2}   \:  +  \: 108

 \sf \implies \: 225 \:  -  \: 108 \:  =  \:  {x}^{2}   \:  +  \:  {y}^{2}

 \sf \implies \:  \boxed{   \tt{x}^{2} \:  +  \:  {y}^{2}   \:  =   \: 117}

We know that :

  • (x - y)² = x² - 2xy + y²

So by substituting the values, we get :

 \sf   { (x \:  - \: y)}^{2}  =  {x}^{2}  \:  +   {y}^{2}  \:  - 2xy

 \sf\implies   {(x \:  -  \: y)}^{2}   \:  =  \: 117 \:  -  \: 2(54)

 \sf\implies \:  {(x \:  -  \: y)}^{2}  \:  = 9

 \sf\implies \: (x \:  -  \: y) =  \:  \sqrt{9}

 \sf \implies \boxed{ \sf \: (x \:  -  \: y) \:  =  \: \pm 3 }

 \sf \boxed{ \sf  \therefore \: \: (x \:  -  \: y) \:  =  \: \pm 3 }

Now, we know that :

  • x² - y² = (x + y)(x - y)

So by substituting the values, we get :

Case 1:

 \sf\implies \:  {x}^{2}  \:  -  \:  {y}^{2}  \:    =  \:  \tt \: (15)(3)

\sf\implies \: \boxed  {\sf {x}^{2}  \:  -  \:  {y}^{2}  \:  =  \:  \tt \: 45}

\sf\: \boxed  {\sf  \therefore \: {x}^{2}  \:  -  \:  {y}^{2}  \:  =  \:  \tt \: 45}

Case 2:

 \sf\implies \:  {x}^{2}  \:  -  \:  {y}^{2}  \:    =  \:  \tt \: (15)(-3)

\sf\implies \: \boxed  {\sf {x}^{2}  \:  -  \:  {y}^{2}  \:  =  \:  \tt \: -45}

\sf\: \boxed  {\sf  \therefore \: {x}^{2}  \:  -  \:  {y}^{2}  \:  =  \:  \tt \: -45}

\red\bigstar Concepts Used:

  • (x + y)² = x² + 2xy + y²
  • Substitution of values
  • Transposition Method
  • (x - y)² = x² - 2xy + y²
  • x² - y² = (x + y)(x - y)

\green\bigstarExtra - Information:

  • (y + a)(y + b) = y² + (a + b)y + ab

  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

  • (a + b)³ = a³ + b³ + 3ab (a + b)

  • (a – b)³ = a³ – b³ – 3ab (a – b)

  • a³ + b³ + c³ – 3abc = (a + b + c)(a² + b² + c² – ab – bc – ca)

  • If (a + b + c ) = 0, then a³ + b³ + c³ = 3abc
Similar questions