Math, asked by Alisha5678643, 4 months ago

please please answer my question.
it's very important. please​

Attachments:

Answers

Answered by Bidikha
6

Question -

If \:  \:  \frac{ {3}^{2x - 8} }{225}  =  \frac{ {5}^{3} }{ {5}^{x} }  \:  \: then \: find \: the \: value \: of \: x

Solution -

\implies \frac{ {3}^{2x - 8} }{225}  =  \frac{ {5}^{3} }{ {5}^{x} }

\implies \frac{ {3}^{2x - 8} }{ {3}^{2}  \times  {5}^{2} }  =  \frac{ {5}^{3} }{ {5}^{x} }

\implies \frac{ {3}^{2x - 8} }{ {3}^{2}  \times  {5}^{2} }  =  {5}^{3 - x}

If

\implies {3}^{2x - 8}  \times  {5}^{ - 2}  =  {5}^{3 - x}  \times  {3}^{2}

Then,

\implies {3}^{2x - 8}  =  {3}^{2}

\implies2x - 8 = 2

\implies2x = 2 + 8

\implies2x = 10

\implies \: x =  \frac{10}{2}

\implies \: x = 5

And,

\implies {5}^{ - 2}  =  {5}^{3 - x}

\implies - 2 = 3 - x

\implies - 2 - 3 =  - x

\implies  - 5 =  - x

\implies \: x = 5

Therefore the value of x is 5

Laws of exponents-

1) {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

2) ({a}^{m} ) {}^{n}  =  {a}^{mn}

3) \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

4) \frac{1}{ {a}^{m} }  =  {a}^{ - m}

5) {a}^{m}  \times  {b}^{m}  = ( {ab})^{m}

6) {a}^{m}  =  {a}^{n} \implies \: m = n

Similar questions