Math, asked by janiceflora24, 10 months ago

please please answer this​

Attachments:

Answers

Answered by Anonymous
40

Answer:

\begin{tabular}{|c |c | c|}\cline{1-3}\bf \underline {Weight (in kg)}&\bf\underline {No. of students(f)}&\bf\underline {c.f}\\\cline{1-3}\sf 40-45 & \sf 2 & \sf 2 \\\sf 45-50 & \sf 3 & \sf 5 \\\sf 50-55 &\sf 8 & \sf 13\\\sf 55-60 &\sf 6 &\sf 19\\\sf 60-65 & \sf 6 &\sf 25 \\\sf 65-70 &\sf 3 &\sf 28 \\\sf 70-75 &\sf 2 &\sf 30 \\\cline{1-3}\end{tabular}

n = \sf \sum fi

n/2 = 30/2 = 15

Therefore, 55 - 60 is the median class.

  • lower limit (l) = 55

  • class interval (h) = 45 - 40 = 5

  • CF = 13

  • frequency (f) = 6

➨ Median =  \sf \ l\ +\ \dfrac{\frac{n}{2}\ -\ cf}{f}\ \times\ h

➨ Median =  \sf  55 + \dfrac{15-13}{6} \times 5

➨ Median =  \sf  55 + \dfrac{2}{6} \times 5

➨ Median =  \sf 55 + 1.67

➨ Median = \pink{\sf 56.67}

So, median weight is 56.67 kg.


Anonymous: Great :)
Answered by InfiniteSoul
39

Solution :

\boxed{\begin{array}{cccc}\sf Weight \:(in\:kg)&\sf Number \:of\: students &\sf Cumulative\: frequency \\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf 40-45&\sf 2&\sf 2  \\\\\sf 45-50 &\sf 3&\sf 2 + 3 = 5 \\\\\sf 50-55 &\sf 8&\sf 5 + 8 = 13\\\\\bf 55-60 &\bf 6&\bf 13 + 6 = 19 \\\\\sf 60-65 &\sf 6&\sf 19 + 6 = 25\\\\\sf 65-70 &\sf 3&\sf 25 + 3 = 28\\\\\sf 70-75 &\sf 2&\sf 28 + 2 = 30\end{array}}

\rule{130}{1}

:\implies\sf N=\sum\limits f\\\\\\:\implies\sf \dfrac{N}{2} = \dfrac{\sum\limits f}{2}\\\\\\:\implies\sf \dfrac{N}{2} = \dfrac{30}{2}\\\\\\:\implies\sf\dfrac{N}{2} = 15 \\\\\underline{\textsf{Hence, 50 - 60 is the median class.}}

\boxed{\begin{minipage}{6cm}$\bigstar$\:\:\sf Median = l + $\sf\dfrac{\frac{n}{2}-C.f.}{f}\times h\\\\Here:\\1)\:l=Lower\:limit\:of\:median\:class=50\\2)\:C.f.=Cumulative\:frequency\:of\:class\\preceeding\:the\:median\:class=13\\3)\:f= frequency\:of\:median\:class=6\\4)\:h= Class\:interval =45-40=5\end{minipage}}

\rule{170}{2}

\underline{\bigstar\:\textbf{According to the Question :}}

\dashrightarrow\sf\:\:Median = l +\dfrac{\frac{n}{2}-C.f.}{f}\times h\\\\\\\dashrightarrow\sf\:\:Median = 55 +\bigg\lgroup\dfrac{15-13}{6}\times 5\bigg\rgroup\\\\\\\dashrightarrow\sf\:\:Median = 55 +\bigg\lgroup\dfrac{2}{6}\times5\bigg\rgroup\\\\\\\dashrightarrow\sf\:\:Median = 55 + 1.67\\\\\\\dashrightarrow\:\:\underline{\boxed{\sf Median = 56.67}}

\therefore\:\underline{\textsf{Median weight of the distribution is \textbf{56.67 kg}}}.


Anonymous: Good
Similar questions