Math, asked by katrina27, 10 months ago

please please answer this question8 root x minus 15 root Y is equal to minus root x into Y and 10 by root x + 8 by root Y is equal to 4 find the value of x and y ​

Answers

Answered by prabjeetsingh6
2

Answer:

x = 25 \text{ and } y = 16

Step-by-step explanation:

\text{Given linear equations are}

8\sqrt{x} - 15\sqrt{y} =-\sqrt{xy}        ...(1)

\cfrac{10}{\sqrt{x}} + \cfrac{8}{\sqrt{y}} = 4                   ...(2)

\text{Divide both sides of Eqn. (1) by } \sqrt{xy},

\therefore \cfrac{8\sqrt{x}}{\sqrt{xy}} -\cfrac{15\sqrt{y}}{\sqrt{xy}} = -\cfrac{\sqrt{xy}}{\sqrt{xy}}

\Rightarrow \cfrac{8}{\sqrt{y}} - \cfrac{15}{\sqrt{x}} = -1

\Rightarrow -\cfrac{15}{\sqrt{x}} + \cfrac{8}{\sqrt{y}} = -1        ...(3)

\text{Now, let }\cfrac{1}{\sqrt{x}} = m \text{ and } \cfrac{1}{\sqrt{y}} = n

\text{So, Eqn. (3) becomes}

-15m + 8n = -1                 ...(4)

\text{And, Eqn. (2) becomes}

10m + 8n = 4                ...(5)

\text{Subtract Eqn. (5) from Eqn. (4),}

-15m + 8n -(10m + 8n) = -1 -4

\Rightarrow -15m + 8n - 10m - 8n = -5

\Rightarrow -25m = -5

\Rightarrow m = \cfrac{-5}{-25}

\Rightarrow m = \cfrac{1}{5}

\text{As, } \cfrac{1}{\sqrt{x}} = m

\therefore \cfrac{1}{\sqrt{x}} = \cfrac{1}{5}

\Rightarrow \sqrt{x} = 5

\Rightarrow x = (5)^2

\Rightarrow x = 25

\text{Put value of m in Eqn. (5),}

10\times\cfrac{1}{5} + 8 n = 4

\Rightarrow 2+8n = 4

\Rightarrow 8n = 4-2

\Rightarrow 8n = 2

\Rightarrow n = \cfrac{2}{8}

\Rightarrow n = \cfrac{1}{4}

\text{As, }\cfrac{1}{\sqrt{y}} = n

\therefore \cfrac{1}{\sqrt{y}} = \cfrac{1}{4}

\Rightarrow \sqrt{y} = 4

\Rightarrow y=4^2

\Rightarrow y = 16

Please mark my answer as BRAINLIEST.

Similar questions