Math, asked by ankitsoni335, 4 months ago

please please find the answer please help me please help me this is choose the correct​

Attachments:

Answers

Answered by Vasim2727
1

Answer:

a

a

b

d

a

c

........mark as brainliest

Answered by Anonymous
3

Required Solution:-

36. Find (a⁴ + b⁴) × ( - )

→ Multiplying by distributive law

= a⁴(a² - b²) + b⁴(a² - b²)

= a⁶ - a⁴b² + b⁴a² - b⁶

Hence, Option (a) a⁶ - a⁴b² + ba² - b⁶ is the correct answer.

______________________________________

37. Find the product of \bf{\bigg(a^3 + \dfrac{1}{a^3}\bigg)\:and\:\bigg(a + \dfrac{1}{a}\bigg)}

→ = \sf{\bigg(a^3 + \dfrac{1}{a^3}\bigg) \times \bigg(a + \dfrac{1}{a}\bigg)}

Multiplying by distributive law,

\sf{a^3\bigg(a + \dfrac{1}{a}\bigg) + \dfrac{1}{a^3}\bigg(a+\dfrac{1}{a}\bigg)}

= \sf{a^4 + \dfrac{a^3}{a} + \dfrac{a}{a^3} + \dfrac{1}{a^4}}

= \sf{a^4 + a^2 + \dfrac{1}{a^2} + \dfrac{1}{a^4}}

Hence, Option (d) \bf{a^4 + a^2 + \dfrac{1}{a^2} + \dfrac{1}{a^4}} is the correct answer.

______________________________________

38. Find \bf{\bigg(a^2 - \dfrac{1}{a^2}\bigg) \times \bigg(a^2 + \dfrac{1}{a^2}\bigg)}

\sf{\bigg(a^2 - \dfrac{1}{a^2}\bigg) \times \bigg(a^2 + \dfrac{1}{a^2}\bigg)}

Using the identity:-

(a - b)(a + b) = a² - b²

= \sf{(a^2)^2 - \bigg(\dfrac{1}{a^2}\bigg)^2}

= \sf{a^4 - \dfrac{1}{a^4}}

Hence, Option (c) \bf{a^4 - \dfrac{1}{a^4}} is the correct answer.

______________________________________

39. Divide 4x²y² by 2xy

\sf{\dfrac{4x^2y^2}{2xy}}

= \sf{\dfrac{\not{4} x^{\not{2}} y^{\not{2}}}{\not{2}\not{x}\not{y}}}

= \sf{2xy}

Hence, Option (c) 2xy is the correct answer.

______________________________________

40. Find out the value of 8a²b² ÷ (-4ab).

\sf{\dfrac{8a^2b^2}{-4ab}}

= \sf{\dfrac{-8a^2b^2}{4ab}}

= -2ab

Hence, Option(c) -2ab is the correct answer.

______________________________________

41. Find the value obtained after dividing 4x³ + 6x² - 8x by 2x.

→ Dividing 4x³ + 6x² - 8x by 2x

= \sf{\dfrac{4x^3 + 6x^2 - 8x}{2x}}

Taking 2x common,

= \sf{\dfrac{2x(2x^2 + 3x - 4)}{2x}}

= \sf{2x^2 + 3x - 4}

Hence, Option (c) 2x² + 3x - 4 is the correct answer.

______________________________________

42. Find out the value obtaining after dividing 6x - 3x³ + 6x² by 3x².

→ Dividing 6x⁴ - 3x³ + 6x² by 3x²

= \sf{\dfrac{6x^4 - 3x^3 + 6x^2}{3x^2}}

Taking 3x² as common.

\sf{\dfrac{3x^2(2x^2 - x + 2)}{3x^2}}

\sf{2x^2 - x + 2}

Hence, Option (d) 2x² - x + 2 is the correct answer.

______________________________________

Similar questions