Math, asked by Akshat0161, 4 months ago

PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE

Class Interval | Frequency
65 - 85 | 4
85 - 105 | 5
105 - 125 | 13
125 - 145 | 20
145 - 165 | 4
165 - 185 | 8
185 - 205 | 4

FIND MODE , MEDIAN & MEAN​

Answers

Answered by kishorpadariya37
0

Answer:

Class Interval | Frequency

65 - 85 | 4

85 - 105 | 5

105 - 125 | 13

125 - 145 | 20

145 - 165 | 4

165 - 185 | 8

185 - 205 | 4

FIND MODE , MEDIAN & MEAN

Step-by-step explanation:

I don't know

Answered by Anonymous
1

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Frequency\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf{65 - 85 }& \bf {75}& \bf{-3} & \bf{4}& \bf{-12} & \bf{4} \\ \\ \bf{85 - 105} & 45 & -2 & 5 & -10 & 9 \\ \\ 105 - 125 & 115 & 0 & 13 & -13 & 22\\ \\ 125 - 145 & 155 & 1 &20 & 0 & 56\\ \\ 145 - 165& 175 & 2& 8& 16 &68  \\ \\ 165 - 185 & 195 & 2& 4 & 12 & 68 \\ \\ 185 - 205 & 195& 3 & 4& 12 & 68\\ \\Total & & 68 & 7 & \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

For Median : -

Cumulative frequency of the class 125 - 145 which is greater than \dfrac{68}{2} that is 34. nearest to it so 125 - 145 is the median class .

\:\:\:\:\:\:\:\:\:\:\color{black}\boxed{Median = l + \dfrac{n/2}{f} - c.f × h }

\:\:\:\:\:\:\:\:\:\: \sf\implies{125 \dfrac{ 34 - 22}{29} × 20}

\:\:\:\:\:\:\:\:\:\: \sf\implies{125 + 12}

\:\:\:\:\:\:\:\:\:\: \sf\implies{137}

Hence, here Median is 137.

\rule{200pt}{4pt}

For Mode : -

The class 125 - 145 has maximum frequency so the modal class

\:\:\:\:\:\:\:\:\:\:\color{black}\boxed{Mode : - l = \dfrac{f_{1} + f_{0}} {2f_{1} - f_{0} - f_{2} × h}}

\:\:\:\:\:\:\:\:\:\: \implies\sf{l = 125 + \dfrac {20 - 13} {2 × 20 - 13 - 14 × 120}}

\:\:\:\:\:\:\:\:\:\: \implies\sf{l = 125 + \dfrac {140} {13}}

\:\:\:\:\:\:\:\:\:\: \implies\sf{l = 125 + 10.7692}

\:\:\:\:\:\:\:\:\:\: \implies\sf{l 135.77}

Hence, mode is 135.77 (Approx)

\rule{200pt}{4pt}

Similar questions