Science, asked by Anonymous, 10 months ago

please please please please Please solvee this I love you solver❤️
integral : 1/(4x^3+3x^2+2x+1)......​

Answers

Answered by ShresthaTheMetalGuy
0

To Find:

∫ [1/(4x³+3x²+2x+1)] dx

Solution

Now, let; u=4x³+3x²+2x+1

» y=1/u

On applying chain rule:

, i.e., ∫(y) dx =∫(y) du ÷ [(d/dx){u}]

∫(y) dx=∫(1/u) du÷[(d/dx){4x³+3x²+2x+1}]

  ⇒ \frac{ log_{e}(u) }{12x {}^{2} + 6x + 2 }  + C \:  \:  \: , \ \:  \: C\: ∈ \: R

 ⇒ \frac{ln(4 {x}^{3}  + 3 {x}^{2} + 2x + 1 )}{12x {}^{2}  + 6x + 2}  + C \:, \: C\: ∈ \: R

Answered by amansharma1515
0

Explanation:

pornhub

fojr8ggjdhdh

Similar questions