Math, asked by shreyamishra8374, 8 months ago

please please please solve it step by step ​

Attachments:

Answers

Answered by bhandarianjali43
0

Answer:

Hope it helps you.........

Attachments:
Answered by Anonymous
13

\red\bigstar Answer:

  •  \sf  \boxed{ \sf \: x \:  -  \:  \dfrac{1}{x} \:  =  \: \pm 10 }

\pink\bigstar Given:

  •  \sf \:  {x}^{2}  \:  +  \:  \dfrac{1}{ {x}^{2} }  \:  =  \: 102

\blue\bigstar To find:

  •  \sf \: x \:  -   \:  \dfrac{1}{x}

\red\bigstar Solution:

We know that :

  • (x - y)² = x² - 2xy + y²

Now,

x² + y² can be written as (x - y)² + 2xy

Similarly,

 \sf \:  {x}^{2}  \:    +    \:  \dfrac{1}{ {x}^{2} }  \:  =  \:  {( x  \:   -   \:  { \dfrac{1}{x} })}^{2}  \:   +   \: 2 \times x \times  \dfrac{1}{x}

By substituting the values, we get:

 \sf\implies \:  102 \:  =  \: {( x  \:   -   \:  { \dfrac{1}{x} })}^{2} \:  +  \: 2

[  \sf\because x  \: and \:   \dfrac{1}{x}  \: get \: cancelled]

 \sf\implies \: 102 \:  -  \: 2 \:  = {( x  \:   -   \:  { \dfrac{1}{x} })}^{2}

[ By transposition method ]

 \sf\implies \: 100 \:  =  \:  {( x  \:   -   \:  { \dfrac{1}{x} })}^{2}

 \sf\implies \:  \sqrt{100}   \:  =  \: x \:  -  \:  \dfrac{1}{x}

 \sf\implies \boxed{ \sf\: \pm 10 \:  =  \: x \:  -  \:  \dfrac{1}{x} }

 \sf\boxed{  \sf\therefore\: \: x \:  -  \:  \dfrac{1}{x}  =   \: \pm 10 }

\pink\bigstar Concepts Used:

  • (x - y)² = x² - 2xy + y²
  • x² + y² = (x - y)² + 2xy
  • Substitution of values
  • Cancellation of the same number multipled and divided again
  • Transposition Method

\green\bigstarExtra - Information:

  • (a + b)² = a² + 2ab + b²

  • (a – b)² = a² – 2ab + b²

  • a² – b² = (a + b)(a – b)

  • (y + a)(y + b) = y² + (a + b)y + ab

  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

  • (a + b)³ = a³ + b³ + 3ab (a + b)

  • (a – b)³ = a³ – b³ – 3ab (a – b)

  • a³ + b³ + c³ – 3abc = (a + b + c)(a² + b² + c² – ab – bc – ca)

  • If (a + b + c ) = 0, then a³ + b³ + c³ = 3abc
Similar questions