Physics, asked by RidhoChauhan1923, 10 months ago

please please please solve them ...... ​

Attachments:

Answers

Answered by shadowsabers03
7

17.

  • Current, \sf{I=0.8\ A}
  • Potential Difference, \sf{V=20\ V}

By Ohm's Law, resistance,

\displaystyle\longrightarrow\sf{R=\dfrac{V}{I}}

\displaystyle\longrightarrow\sf{R=\dfrac{20}{0.8}\ \Omega}

\displaystyle\longrightarrow\sf{\underline{\underline{R=25\ \Omega}}}

18.

  • Resistance, \sf{R=2\ k\Omega=2\times10^3\ \Omega}
  • Current, \sf{I=10\ mA=10^{-2}\ A}

By Ohm's Law, potential difference,

\displaystyle\longrightarrow\sf{V=IR}

\displaystyle\longrightarrow\sf{V=2\times10^3\times10^{-2}\ V}

\displaystyle\longrightarrow\sf{\underline{\underline{V=20\ V}}}

19.

  • Current, \sf{I=50\ mA=50\times10^{-3}\ A}
  • Voltage, \sf{V=12\ V}

By Ohm's Law, resistance,

\displaystyle\longrightarrow\sf{R=\dfrac{V}{I}}

\displaystyle\longrightarrow\sf{R=\dfrac{12}{50\times10^{-3}}\ \Omega}

\displaystyle\longrightarrow\sf{\underline{\underline{R=240\ \Omega}}}

20.

  • Initial voltage, \sf{V_1=100\ V}
  • Initial current, \sf{I_1=5\ mA=5\times10^{-3}\ A}

By Ohm's Law, resistance,

\displaystyle\longrightarrow\sf{R=\dfrac{V_1}{I_1}}

\displaystyle\longrightarrow\sf{R=\dfrac{100}{5\times10^{-3}}\ \Omega}

\displaystyle\longrightarrow\sf{\underline{\underline{R=20000\ \Omega}}}

\displaystyle\longrightarrow\sf{\underline{\underline{R=20\ k\Omega}}}

  • New voltage, \sf{V_2=25\ V}

Resistance remains unchanged. Hence new value of current flow is,

\displaystyle\longrightarrow\sf{I_2=\dfrac{V_2}{R}}

\displaystyle\longrightarrow\sf{I_2=\dfrac{25}{20000}\ A}

\displaystyle\longrightarrow\sf{\underline{\underline{I_2=1.25\times10^{-3} A}}}

\displaystyle\longrightarrow\sf{\underline{\underline{I_2=1.25\ mA}}}

21.

  • Voltage, \sf{V=120\ V}
  • Current in the first case, \sf{I_a=50\ mA=50\times10^{-3}\ A}

Then by Ohm's Law, the resistance in first case is,

\displaystyle\longrightarrow\sf{R_a=\dfrac{V}{I_a}}

\displaystyle\longrightarrow\sf{R_a=\dfrac{120}{50\times10^{-3}}\ \Omega}

\displaystyle\longrightarrow\sf{\underline{\underline{R_a=2400\ \Omega}}}

\displaystyle\longrightarrow\sf{\underline{\underline{R_a=2.4\ k\Omega}}}

  • Current in the second case, \sf{I_b=200\ \mu A=200\times10^{-6}\ A}

Then by Ohm's Law, the resistance in second case is,

\displaystyle\longrightarrow\sf{R_b=\dfrac{V}{I_b}}

\displaystyle\longrightarrow\sf{R_b=\dfrac{120}{200\times10^{-6}}\ \Omega}

\displaystyle\longrightarrow\sf{\underline{\underline{R_b=600000\ \Omega}}}

\displaystyle\longrightarrow\sf{\underline{\underline{R_b=0.6\ M\Omega}}}

Similar questions