Math, asked by Mysterioushine, 10 months ago

PLEASE PLEASE SOLVE THIS WITH STEPS . IT'S VERY IMPORTANT . PLEASE SOLVE WITH STEPS . ( IRRELEVANT ANSWERS WILL BE DIRECTLY REPORTED)​

Attachments:

Answers

Answered by Anonymous
20

Question:

\sf{D, \ E, \ F \ are \ midpoints \ of \ AB, \ BC, \ AC} \sf{of \ \triangle ABC. \ If \ Coordinates \ of \ D,} \sf{ E, \ F \ are \ (1, 2), \ (0, -1), (2, -1), \ then \ the} \sf{coordinates \ of \ A \ are....} \sf{a) \ (3,2) \ \ b) \ (-3,2) \ \ c) \ (-1,3) \ \ d) \ (2,1)}

__________________________

Answer:

\sf{a) \ (3,2) \ is \ the \ correct \ option.}

Diagram:

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(2,2)\qbezier(0,0)(0,0)(4,0)\qbezier(2,2)(4,0)(4,0)\put(2.7,1.1){$\boldsymbol / $}\put(1,1){$\boldsymbol \backslash $}\put(2,-0.1){$\boldsymbol | $}\put(1.8,2.1){$\bf A\ (x_1,\ y_1) $}\put(1.8,-0.5){$\bf E\ (0,\ -1) $}\put(-0.3,-0.3){$\bf B\ (x_2,\ y_2) $}\put(4,-0.3){$\bf C\ (x_3,\ y_3)$}\put(2.9,1.2){$\bf F\ (2,\ -1)$}\put(-0.4,1.1){$\bf D\ (1,\ 2)$}\end{picture}

Solution:

\sf{Let \ coordinates \ of \ A, \ B \ and \ C}

\sf{be \ (x_{1},y_{1}), \ (x_{2},y_{2}) \ and \ (x_{3},y_{3}) \ respectively.}

\sf{By \ midpoint \ fotmula}

\boxed{\sf{x=\dfrac{x_{1}+x_{2}}{2}, \ y=\dfrac{y_{1}+y_{2}}{2}}}

\sf{Considering \ x \ coordinate}

\sf{For \ seg \ AB,}

\sf{\dfrac{x_{1}+x_{2}}{2}=1}

\sf{\leadsto{x_{1}+x_{2}=2...(1)}}

\sf{For \ seg \ BC,}

\sf{\dfrac{x_{2}+x_{3}}{2}=0}

\sf{\leadsto{x_{2}+x_{3}=0...(2)}}

\sf{For \ seg \ AC,}

\sf{\dfrac{x_{1}+x_{3}}{2}=2}

\sf{\leadsto{x_{1}+x_{3}=4...(3)}}

\sf{From \ equation (2), \ we \ get}

\sf{x_{2}+x_{3}=0}

\sf{\therefore{x_{2}=-x_{3}}}

\sf{Substitute \ x_{2}=-x_{3} \ in \ equation (1), \ we \ get}

\sf{x_{1}-x_{3}=2}

\sf{\therefore{x_{1}=2+x_{3}}}

\sf{Substitute \ x_{1}=2+x_{3} \ in \ equation (3), \ we \ get}

\sf{2+x_{3}+x_{3}=4}

\sf{\therefore{2x_{3}=2}}

\sf{\implies{\therefore{x_{3}=1}}}

\sf{Substitute \ x_{3}=1 \ in \ equation (2), \ we \ get}

\sf{x_{2}+1=0}

\sf{\implies{\therefore{x_{2}=-1}}}

\sf{Substitute \ x_{2}=-1 \ in \ equation (1), \ we \ get}

\sf{x_{1}-1=2}

\boxed{\sf{\therefore{x_{1}=3}}}

\sf{Considering \ y \ coordinate}

\sf{For \ seg \ AB,}

\sf{\dfrac{y_{1}+y_{2}}{2}=2}

\sf{\leadsto{y_{1}+y_{2}=4...(i)}}

\sf{For \ seg \ BC,}

\sf{\dfrac{y_{2}+y_{3}}{2}=-1}

\sf{\leadsto{y_{2}+y_{3}=-2...(ii)}}

\sf{For \ seg \ AC,}

\sf{\dfrac{y_{1}+y_{3}}{2}=-1}

\sf{\leadsto{y_{1}+y_{3}=-2...(iii)}}

\sf{From \ equation (2) \ we \ get,}

\sf{y_{2}+y_{3}=-2}

\sf{\therefore{y_{2}=-2-y_{3}}}

\sf{Substitute \ y_{2}=-2-y_{3} \ in \ equation (i), \ we \ get}

\sf{y_{1}-2-y_{3}=4}

\sf{\therefore{y_{1}=6+y_{3}}}

\sf{Substitute \ in \ y_{1}=6+y_{3} \ equation (iii), \ we \ get}

\sf{6+y_{3}+y_{3}=-2}

\sf{\therefore{2y_{3}=-8}}

\sf{\implies{\therefore{y_{3}=-4}}}

\sf{Substitute \ y_{3}=-4 \ in \ equation (ii), \ we \ get}

\sf{-4+y_{2}=-2}

\sf{\implies{\therefore{y_{2}=2}}}

\sf{Substitute \ y_{2}=2 \ in \ equation (1), \ we \ get}

\sf{y_{1}+2=4}

\sf{\boxed{\therefore{y_{1}=2}}}

\sf{But,}

\sf{A=(x_{1},y_{1})}

\sf{\therefore{A=(3,2)}}

\sf\purple{\tt{Hence, \ the \ coordinates \ of \ points}}

\sf\purple{\tt{A \ are \ x=3 \ and \ y=2.}}

Answered by science132004
1

Answer:

hello............could u please inbox me ?

Similar questions