please prove
BF×AE×CD=AF×CE×BD
Answers
Answer:
Step-by-step explanation:
In ∆ AOB, OD is the bisector of angle AOB
OA/OB =AD/DB---------------eq(1)
Theorem used here
[The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle]
In ∆BOC .OE is the bisector of angle BOC
OB/OC = BE/EC---------eq(2)
In ∆COA, OF is the bisector of angle COA
OC/OA =CF/FA-----------eq(3)
Multiplying eq 1, 2, 3
(OA/OB) * (OB/OC) * (OC/OA) = (AD/DB) * (BE/EC) * (CF/FA)
1= (AD/DB) * (BE/EC) * (CF/FA)
DB*EC*FA = AD*BE*CF
-----------------------------------------------------------------------------------------------------
AD*BE*CF = DB*EC*FA
---------------------------------------------------------------------------------------------------
Hope this will help you.....
Answer:
By the angle bisector theorem in triangle AOB, we have: AO/BO=AF/FB —-(1). Likewise, BO/CO=BD/CD ——(2) and CO/AO=CE/AE—-(3) . (1)x(2)x(3) gives us, (AO/BO)(BO/CO)(CO/AO)=(AF/FB)(BD/CD)(CE/AE) which implies,
BFxAExCD=AFxCExBD.
Step-by-step explanation: