Math, asked by sumangeorge75, 1 year ago

please prove it please ​

Attachments:

Answers

Answered by preeth3
1

thankyou for asking me please mark me as brainliest

Attachments:

Grimmjow: Mark this answer as Brainliest!
Answered by Grimmjow
14

\mathsf{Consider :\;\dfrac{1 - cos\theta}{1 + cos\theta}}

Multiplying Numerator and Denominator with (1 - cosθ), We get :

\mathsf{\implies \dfrac{(1 - cos\theta)(1 - cos\theta)}{(1 + cos\theta)(1 - cos\theta)}}

★  We know that : (a + b)(a - b) = a² - b²

\mathsf{\implies (1 - cos\theta)(1 + cos\theta) = 1 - cos^2\theta}

\mathsf{\implies \dfrac{(1 - cos\theta)^2}{1 - cos^2\theta}}

\bigstar\;\;\textsf{We know that : \boxed{\mathtt{1 - cos^2\theta = sin^2\theta}}}

\mathsf{\implies \dfrac{(1 - cos\theta)^2}{sin^2\theta}}

\mathsf{\implies \bigg[\dfrac{1 - cos\theta}{sin\theta}\bigg]^2}

\mathsf{\implies \bigg[\dfrac{1}{sin\theta} - \dfrac{cos\theta}{sin\theta}\bigg]^2}

We know that :

\bigstar\;\;\boxed{\mathsf{\dfrac{1}{sin\theta} = cosec\theta}}

\bigstar\;\;\boxed{\mathsf{\dfrac{cos\theta}{sin\theta} = cot\theta}}

\mathsf{\implies (cosec\theta - cot\theta)^2}

\mathsf{\implies [-(cot\theta - cosec\theta)]^2}

\mathsf{\implies [-1]^2(cot\theta - cosec\theta)^2}

\mathsf{\implies (cot\theta - cosec\theta)^2}

Similar questions