English, asked by sumangeorge75, 1 year ago

please prove it please ​

Attachments:

Answers

Answered by UltimateMasTerMind
11

Solution:-

=) √{(1+cosA)/(1-cosA)}

Multiplying by √(1 + cosA) on both Numerator and Denominator.

=) √{(1+cosA)/(1-cosA)} × √{(1+cosA)/(1+cosA)}

=) √{ (1+cosA)²/ (1² - cos²A)

=) √{ (1 + cosA)² / sin²A

=) (1+ cosA)/sinA

Hence Proved!

Identity Used:-

( 1² - cos²A) = sin²A

Answered by Anonymous
14

Answer:-

 \frac{ \sqrt{1 +  \cos(x) } }{ \sqrt{1 -  \cos(x) } }

Multiplying by √( 1 + cos x) in Numerator and Denominator.

\frac{ \sqrt{1 +  \cos(x) } }{ \sqrt{1 -  \cos(x) } } \times  \frac{ \sqrt{1 +  \cos(x) } }{ \sqrt{1 +  \cos(x) } }  \\  \\  \frac{ {(1 +  \cos(x) })^{2} }{ {1}^{2} -  {( \cos(x)) }^{2}  }  \\  \\

 \frac{ \sqrt{ {(1 +  \cos(x) )}^{2} } }{ \sqrt{ { \sin(x) }^{2} } }  \\  \\  \frac{1 +  \cos(x) }{ \sin(x) }

Hence Proved!

Identity Used.

• ( a + b) × ( a + b) = ( a + b)²

• ( a + b) × ( a - b) = a² - b²

Similar questions