Please prove LHS=RHS
Attachments:
Answers
Answered by
22
Answer:
cos²a/(cot²a - cos²a) = 3
cos²a/(cos²A/sin²A)-cos²A = 3
cos²a/cos²A[(1/sin²A)-1] = 3
1/[(1/sin²A)-1] = 3
sin²a/(1-sin²a) = 3
sin²a/cos²a = 3
tan²a = 3
tana = √3
tana = tan60°
so,
a = 60° (Ans)
at 60° only it satisfy the above condition .. only one value possible
(Mark as brainlist)
Similar questions