Math, asked by manamee, 11 months ago

Please Prove:
(sin^4 theta - cos ^ 4 theta + 1) cosec ^2 theta =2 ​

Attachments:

Answers

Answered by sanketj
2

R.H.S.

= 2

L.H.S.

= (sin⁴A - cos⁴A + 1) cosec²A

= [(sin²A)² - (cos²A)² + 1] cosec²A

= [(sin²A + cos²A)(sin²A - cos²A) + 1] cosec²A

= {(1)[(sin²A - (1 - sin²A)] + 1} cosec²A

... (sin²A + cos²A = 1 => cos²A = 1 - sin²A)

= (sin²A - 1 + sin²A + 1) cosec²A

= 2sin²Acosec²A = 2(1) ... (sinAcosecA = 1)

= 2

= R.H.S.

•.• L.H.S. = R.H.S.

.•. (sin⁴A - cos⁴A + 1) cosec²A = 2

... Hence Proved!

Answered by nityagupta0220
1

Answer:

Photo attached

Step-by-step explanation:

Attachments:
Similar questions