Please prove that cos2x/-----
Attachments:
Answers
Answered by
12
Hello!
Here u go...
✔LHS=cos(2x) / 1 + sin(2x)
=(cos^2x- sin^2x) /(cos^2x+sin^2x +2sinx.cosx)
{
since we have,
cos(2x) = cos^2x-sin^2x
and
cos^2x+sin^2 = 1
}
✔LHS =(cosx+sinx).(cosx -sinx) /(cosx +sinx)^2
=(cosx -sinx) /(cosx +sinx)
=(1 -sinx/cosx) /(1 +sinx/cosx)
=(1-tanx)/(1+tanx)-----------(1)
✔Now
RHS=tan (pi/4 - x)
=(tanpi/4 - tanx)/(1+tanpi/4tanx)
=(1-tanx)/(1+tanx)----------(2)
✔from equation (1) and (2) we get,
LHS = RHS.
✔Hope this answer will help u...
@Neha...
Here u go...
✔LHS=cos(2x) / 1 + sin(2x)
=(cos^2x- sin^2x) /(cos^2x+sin^2x +2sinx.cosx)
{
since we have,
cos(2x) = cos^2x-sin^2x
and
cos^2x+sin^2 = 1
}
✔LHS =(cosx+sinx).(cosx -sinx) /(cosx +sinx)^2
=(cosx -sinx) /(cosx +sinx)
=(1 -sinx/cosx) /(1 +sinx/cosx)
=(1-tanx)/(1+tanx)-----------(1)
✔Now
RHS=tan (pi/4 - x)
=(tanpi/4 - tanx)/(1+tanpi/4tanx)
=(1-tanx)/(1+tanx)----------(2)
✔from equation (1) and (2) we get,
LHS = RHS.
✔Hope this answer will help u...
@Neha...
Similar questions