Math, asked by pchourasia1405, 1 year ago

please prove the above.​

Attachments:

Answers

Answered by PegasusPurpose
0

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \huge\mathcal{\bf{\underline{\underline{\huge\mathcal{Answer}}}}}

\large\mathcal\red{solution}

 L.H.S=\frac{ \cot(a)  +  \cosec(a) - 1 }{ \cot(a) - \cosec(a)   + 1}  \\  =  &gt;  \frac{ \frac{ \cos(a) }{ \sin(a)  }  +   \frac{1}{ \sin(a) } - 1 }{ \frac{ \cos(a) }{ \sin(a) }   -  \frac{1}{ \sin(a) } + 1 }  \\  =  &gt;  \frac{ \frac{ \cos(a) +  1  -  \sin(a) }{ \sin(a) } }{ \frac{ \cos(a)  - 1 +  \sin(a) }{ \sin(a) } }  \\  =  &gt; \frac{\cos(a) +  1  -  \sin(a) }{\cos(a)  - 1 +  \sin(a) }\\</p><p>=&gt;\frac{\cos{}^{2}(\frac{a}{2})-\sin{}^{2}(\frac{a}{2})+\cos{}^{2}(\frac{a}{2})+\sin{}^{2}(\frac{a}{2})-\sin(a)}{\cos{}^{2}(\frac{a}{2})-\sin{}^{2}(\frac{a}{2})-\cos{}^{2}(\frac{a}{2})-\sin{}^{2}(\frac{a}{2})+\sin(a)}\\</p><p></p><p>=≥\frac{2\cos{}^{2}(\frac{a}{2})-2\sin(\frac{a}{2})\cos(\frac{a}{2})}{2\sin(\frac{a}{2})\cos(\frac{a}{2})-2\sin{}^{2}(\frac{a}{2})}\\</p><p></p><p>=&gt;\frac{2\cos(\frac{a}{2})(\cos(\frac{a}{2})-\sin(\frac{a}{2})}{2\sin(\frac{a}{2})(\cos(\frac{a}{2})-\sin(\frac{a}{2})}\\</p><p></p><p>=&gt;\frac{\cos(\frac{a}{2})}{\sin(\frac{a}{2})}\\</p><p>=&gt;\cot(\frac{a}{2})\\\\</p><p></p><p>R.H.S=\frac{1+cos(a)}{sin(a)}\\</p><p></p><p>=\frac{2\cos{}^{2}(\frac{a}{2})}{2\sin(\frac{a}{2})\cos(\frac{a}{2})}\\</p><p>=\frac{\cos(\frac{a}{2})}{\sin(\frac{a}{2})}\\</p><p>=\cot(\frac{a}{2})\\</p><p></p><p></p><p>therefore.....L.H.S=R.H.S....(proved)</p><p></p><p></p><p>

\large\mathcal\red{hope\: this \: helps \:you......}

Similar questions