Please prove the expression
Attachments:
Answers
Answered by
6
Solution:-
To Prove:-
[ (sin²A - sin²B)/(sinA.cosA - sinB.cosB)] = tan ( A + B)
Proof :-
=) [(sin²A - sin²B)/(sinA.cosA - sinB.cosB)]
=) [ (1-cos2A)/2 - (1-cos2B)/2 ]/ [ ( 2sinA.cosA)/2 - ( 2sinB.cosB)/2 ]
=) [ (1 - cos2A - 1 + cos2B)/(sin2A - sin2B)]
=) [ ( - cos2A + cos2B)/( sin2A - sin2B) ]
=) [ -(cos2A -cos2B)/(sin2A - sin2B)]
=) { - [ -2sin( 2A + 2B)/2 .sin(2A -2B)/2 ]/[ 2sin( 2A-2B)/2 . cos(2A + 2B)/2 ]}
=) [ sin( A + B)/cos(A+B) ]
=) tan(A + B)
L.H.S. = R.H.S.
Hence Proved!
Similar questions