please prove the following identity
Attachments:
Answers
Answered by
4
Proof :
∴ L.H.S. = tan²θ / (secθ - 1)²
= (sin²θ / cos²θ) / (1/cosθ - 1)²
= (sin²θ / cos²θ) / {(1 - cosθ) / cosθ}²
= (sin²θ / cos²θ) / {(1 - cosθ)² / cos²θ}
= sin²θ / (1 - cosθ)²
= (1 - cos²θ) / (1 - cosθ)²
= {(1 + cosθ)(1 - cosθ)} / (1 - cosθ)²
= (1 + cosθ) / (1 - cosθ)
= {(1 + cosθ)(1 + cosθ)} / {(1 - cosθ)(1 + cosθ)}
= (1 + cosθ)² / (1 - cos²θ)
= {(1 + cosθ)/sinθ}²
= (1/sinθ + cosθ/sinθ)²
= (cosecθ + cotθ)² = R.H.S
Hence, proved.
Similar questions