Math, asked by atharva40date, 10 months ago

please prove the question given in the attachment.​

Attachments:

Answers

Answered by Anonymous
12

Answer:

L.H.S. = R.H.S.

Step-by-step explanation:

Given :

\large \text{$\dfrac{2sin \ \theta \ tan \ \theta(1-tan \ \theta)+2sin \ \theta \ sec^2 \ \theta}{(1+tan \ \theta)^2} =\dfrac{2sin \theta}{1+tan \theta} $}

Here we will use two main concept

\large \text{$sec^2-tan^2=1 \ ...(i)$}\\\\\\\large \text{$(a+b)^2=(a+b)(a+b) \ ....(ii)$}

First taking 2 sin θ common in L.H.S.

\large \text{$L.H.S.=\dfrac{2sin \ \theta \ tan \ \theta(1-tan \ \theta)+2sin \ \theta \ sec^2 \ \theta}{(1+tan \ \theta)^2}$}\\\\\\\large \text{$L.H.S.=\dfrac{2sin \ \theta(tan \ \theta(1-tan \ \theta)+sec^2 \ \theta)}{(1+tan \ \theta)^2}$}\\\\\\\large \text{$L.H.S.=\dfrac{2sin \ \theta(tan \ \theta-tan^2 \ \theta+sec^2 \ \theta)}{(1+tan \ \theta)^2}$}\\\\\\

\large \text{$L.H.S.=\dfrac{2sin \ \theta(tan \ \theta+sec^2 \ \theta-tan^2 \ \theta)}{(1+tan \ \theta)^2}$}\\\\\\\large \text{From ( i ) we have $sec^2 \ \theta-tan^2=1$ put here}\\\\\\\large \text{$L.H.S.=\dfrac{2sin \ \theta(tan \ \theta+1))}{(1+tan \ \theta)^2}$}\\\\\\\large \text{From ( ii ) $(1+tan \ \theta)^2=(1+tan \ \theta)(1+tan \ \theta)$ put here}\\\\\\\large \text{$L.H.S.=\dfrac{2sin \ \theta(tan \ \theta+1))}{(1+tan \ \theta){(tan \ \theta+1)}}$}\\\\\\

\large \text{$L.H.S.=\dfrac{2sin \ \theta}{(tan \ \theta+1)}$}

L.H.S. = R.H.S.

Hence proved.

Answered by Anonymous
8

Refer the attachment ..

Attachments:
Similar questions