Math, asked by thilaknayaka1230, 1 month ago

please prove this problem​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \frac{ \sin( \theta) }{1 -  \cot( \theta) }  +  \frac{ \cos( \theta) }{1 -  \tan( \theta) }  \\

  = \frac{ \sin( \theta) }{1 -   \frac{1 }{ \tan( \theta) }}  +  \frac{ \cos( \theta) }{1 -  \tan( \theta) }  \\

  =  - \frac{ \sin( \theta)  \tan( \theta) }{1 -   \tan( \theta) }  +  \frac{ \cos( \theta) }{1 -  \tan( \theta) }  \\

  =   \frac{  \cos( \theta )  - \sin( \theta)  \tan( \theta) }{1 -   \tan( \theta) }   \\

  =   \frac{  \cos( \theta )  -  \frac{ \sin( \theta) }{ \cos (\theta)}  }{1 -   \tan( \theta) }   \\

  =   \frac{  \cos^{2} ( \theta )  - \sin^{2} ( \theta)  }{ \cos( \theta) (1 -   \tan( \theta)) }   \\

  =   \frac{  (\cos( \theta )  - \sin ( \theta)) ( \cos( \theta) +  \sin( \theta)  ) }{( \cos( \theta)  -   \sin( \theta)) }   \\

  =    \cos( \theta) +  \sin( \theta)    \\

Answered by harshith5610
1

Your answer with complete solution is in above photos

Attachments:
Similar questions