please prove this question and please give correct answer
tomorrow is my maths online test so please give correct answer
Answers
Answer:
ALL THE BEST FOR YOUR MATHS EXAM
Step-by-step explanation:
LHS
cos⁴A -cos²A
(cos²A)²- cos²A
(1-sin²A)²-(1-sin²A)
1+sin⁴A- 2sin²A-1 +sin² A
sin⁴A-sin²A
LHS=RHS
Question : -
Prove that ;
cos⁴ A - cos² A = sin⁴ A - sin² A
ANSWER
Given : -
cos⁴ A - cos² A = sin⁴ A - sin² A
Required to find : -
- LHS = RHS
Solution : -
We can solve this question in 2 methods !
1st method is by solving LHS part and getting the RHS value .
2nd method is by solving the RHS part and getting the LHS value .
So,
Let's have a brief look at both the methods .
1st Method
➔ cos⁴ A - cos² A = sin⁴ A - sin² A
Consider the LHS part
➔ cos⁴ A - cos² A
Taking cos² A common
➔ cos² A ( cos² A - 1 )
From the identity ;
sin² A + cos² A = 1
cos² A = 1 - sin² A
➔ 1 - sin² A ( cos² A - 1 )
➔ 1 ( cos² A - 1 ) - sin² A ( cos² A - 1 )
➔ cos² A - 1 - sin² A cos² A + sin² A
➔ sin² A + cos² A - 1 - sin² A cos² A
since, sin² A + cos² A = 1
➔ 1 - 1 - sin² A cos² A
➔ - sin² A cos² A
Since, we want this in terms of sin let's convert cos² A into sin
Using the identity ;
sin² A + cos² A = 1
cos² A = 1 - sin² A
➔ - sin² A ( 1 - sin² A )
➔ - sin² A + sin⁴ A
➔ sin⁴ A - sin² A
Hence,
➔ LHS = RHS
2nd Method
➔ cos⁴ A - cos² A = sin⁴ A - sin² A
consider the RHS part
➔ sin⁴ A - sin² A
Taking sin² A as common
➔ sin² A ( sin² A - 1 )
From the identity ;
sin² A + cos² A = 1
sin² A = 1 - cos² A
➔ 1 - cos² A ( sin² A - 1 )
➔ 1 ( sin² A - 1 ) - cos² A ( sin² A - 1 )
➔ sin² A - 1 - cos² A sin² A + cos² A
➔ sin² A + cos² A - 1 - cos² A sin² A
Since, sin² A + cos² A = 1
➔ 1 - 1 - cos² A sin² A
➔ - cos² A sin² A
Since, we want this to be in the terms of cos . so, let's convert sin² A into cos A
From the identity ,
sin² A + cos² A = 1
sin² A = 1 - cos² A
➔ - cos² A ( 1 - cos² A )
➔ - cos² A + cos⁴ A
➔ cos⁴ A - cos² A
Hence,
➔ LHS = RHS