Math, asked by vishwajeetsingh47, 8 months ago

please prove this question and please give correct answer
tomorrow is my maths online test so please give correct answer​

Attachments:

Answers

Answered by lubna165
1

Answer:

ALL THE BEST

Step-by-step explanation:

LHS

cos⁴A-cos²A

(cos²A)² - cos²A [cos²A=1-sin²A]

(1-sin²A)²- 1+sin² A

1+sin⁴A-2sin²A-1+sin²A

sin⁴ A -sin²A

LHS=RHS

Answered by Asterinn
4

GIVEN :

Cos⁴A - Cos²A = Sin⁴A - Sin²A

TO PROVE :

LHS = RHS

Where ,

LHS = Cos⁴A - Cos²A

RHS = Sin⁴A - Sin²A

CONCEPT USED :

Sin²A = 1 - Cos²A

Cos²A = 1 - Sin²A

PROOF :

LHS = Cos⁴A - Cos²A

taking out Cos²A as common :-

 =  > Cos²A \: (Cos²A - 1)

 =  >  - Cos²A(1 - Cos²A)

 =  > we \: know \: Sin²A = 1 - Cos²A

 =  >  - Cos²A \: Sin²A

=  >LHS \:  =   - Cos²A \: Sin²A

-----------------------------------

Now ,

RHS = Sin⁴A - Sin²A

taking out Sin²A as common :-

 =  > Sin²A( Sin²A - 1)

 =  >  - Sin²A(1 - Sin²A)

=  > we \: know   \: Cos²A = 1 - Sin²A

 =  >  - Sin²ACos²A

 =  >RHS =   - Sin²ACos²A

LHS = RHS =   - Sin²ACos²A

hence proved LHS = RHS

__________________________

Some trigonometry identities :-

1. Sin²x + Cos²x = 1

2. Cossec²x-cot²x =1

3.Sec²x -tan²x=1

Similar questions