Math, asked by bhavyayadav3986, 10 months ago

PLEASE PROVE THIS
STEP BY STEP

Attachments:

Answers

Answered by Draxillus
6

To prove :-

 \frac{ \sin(5x)  - 2 \sin(3x)  +  \sin(x) }{ \cos(5x)  -  \cos(x) }  =  \tan(x)

Formula used

 \sin( \alpha )   +   \sin( \beta )  = 2 \sin( \frac{ \alpha  +  \beta }{2} )  \cos(\frac{ \alpha   -   \beta }{2})  \\  \\  \sin( \alpha )    -  \sin( \beta )  = 2 \sin( \frac{ \alpha   -  \beta }{2} )  \cos(\frac{ \alpha    +  \beta }{2}) \\  \\   \cos( \alpha )  + \cos( \beta )  = 2 \cos( \: \frac{ \alpha    +  \beta }{2})  \cos(\frac{ \alpha    +  \beta }{2}) \\  \\  \cos( \beta )  -  \cos( \alpha )  = 2  \sin(\frac{ \alpha    +  \beta }{2})  \sin(\frac{ \alpha     -  \beta }{2})

Solutions

 \frac{ \sin(5x)  - 2 \sin(3x)  +  \sin(x) }{ \cos(5x)  -  \cos(x) }   \\  \\  =  \frac{ \: \sin(5x) +  \sin(x) - 2 \sin(3x) }{ \cos(5x)  -  \cos(x)} \\  \\  =  \frac{2sin3x \cos2x - 2 \sin3x }{ - 2 \sin3x \:  \sin2x }  \\  \\  =  \frac{2 \sin3x \: ( \cos2x - 1)  }{ \:  \:- 2 \sin3x \:  \sin2x}  \\  \\  =  \frac{ - 2  { \sin }^{2}x  }{ - 2 \sin(x) \cos(x)  }

= tanx

Similar questions