Math, asked by BrainOfficial, 2 days ago

please prove this.


 \frac{1 -  \cos^{4}a  }{ \sin^{4}  \: a}  =  \: 1 + 2 \cot^{2}  \: a

Answers

Answered by senboni123456
2

Answer:

Step-by-step explanation:

We have,

\dfrac{1-\cos^4(\alpha)}{\sin^4(\alpha)}

=\dfrac{\left(1\right)^2-\left(\cos^2(\alpha)\right)^2}{\sin^2(\alpha)\cdot\sin^2(\alpha)}

=\dfrac{\left(1-\cos^2(\alpha)\right)\left(1+\cos^2(\alpha)\right)}{\sin^2(\alpha)\cdot\sin^2(\alpha)}

=\dfrac{\sin^2(\alpha)\cdot\left(1+\cos^2(\alpha)\right)}{\sin^2(\alpha)\cdot\sin^2(\alpha)}

=\dfrac{1+\cos^2(\alpha)}{\sin^2(\alpha)}

=\dfrac{1}{\sin^2(\alpha)}+\dfrac{\cos^2(\alpha)}{\sin^2(\alpha)}

\tt{=cosec^2(\alpha)+cot^2(\alpha)

\tt{=1+cot^2(\alpha)+cot^2(\alpha)

\tt{=1+2\,cot^2(\alpha)

Similar questions