Math, asked by dpk22, 1 year ago

please provide a solution

Attachments:

Answers

Answered by TeenTitansGo
5

\dfrac{ p^{2} + q^{2}}{r^{2}+s^{2}} = \dfrac{pq}{rs}


Multiply and divide by 2 in right hand side,


\dfrac{ p^{2} + q^{2}}{r^{2}+s^{2}} = \dfrac{2pq}{2rs} \\  \\  \\  \dfrac{ p^{2} + q^{2}}{2pq} = \dfrac{r^{2}+s^{2}}{2rs}



By Componendo and dividendo,



\dfrac{ p^{2} + q^{2} + 2pq}{p^{2}+q^{2}-2pq} = \dfrac{r^{2}+s^{2}+2rs}{r^{2}+s^{2}-2rs}<br />


\dfrac{ ( p + q)^{2}}{(p-q)^{2}} = \dfrac{(r+s)^{2}}{(r-s)^{2}}



Square root on both sides,


\dfrac{ p+q}{p-q}=\dfrac{r+s}{r-s}


<br />\dfrac{r-s}{r+s}=\dfrac{p-q}{p+q}





Therefore the value of ( p - q ) / ( p + q ) in terms of r and s is ( r - s ) / ( r + s )



 \mathsf{Option  \: 2 \:  is \:  correct.} \:
Similar questions