Math, asked by SuparnaSenthilvelan, 3 months ago

Please provide answer for the attached question with proper steps.
Please provide with proper steps.

Attachments:

Answers

Answered by Dinosaurs1842
3

Given :-

ab(a - b)(a + b)( {a}^{2}  +   {b}^{2} ) =  {a}^{m} {b}^{n}  -  {a}^{n} {b}^{m}

To find :-

m - n

(a-b)(a+b) = a² - b² [Identity]

Therefore,

ab( {a}^{2} -  {b}^{2})( {a}^{2} +  {b}^{2}) =  {a}^{m} {b}^{n}  -  {a}^{n} {b}^{m}

The identity can be applied for (a²-b²)(a²+b²) :-

a⁴ - b⁴ = (a²)² - (b²)²

=≥ (a²-b²)(a²+b²)

ab( {a}^{4}  -  {b}^{4}) =  {a}^{m} {b}^{n}  -  {a}^{n} {b}^{m}

[(a \times b \times  {a}^{4}) - (a \times b \times  {b}^{4})] =  {a}^{m} { b}^{n}  -  {a}^{n} {b}^{m}

By multiplying ab with a⁴-b⁴

 {a}^{5}b  -  a {b}^{5}  =  {a}^{m} {b}^{n}  -  {a}^{n} {b}^{m}

Therefore we can conclude that

m = 5

n = 1

Hence,

m - n = 5 - 1 =≥ 4

Option (3) 4 is correct

Important points to remember :-

 {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 {a}^{m}  \times  {b}^{m}  =  {ab}^{m}

 \dfrac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 \dfrac{ {a}^{m} }{ {b}^{m} }   =  (\dfrac{a}{b})^{m}

 {a}^{1}  = a

 {a}^{0}  = 1

 \sqrt{a}  =  {a}^{ \frac{1}{2} }

Similar questions