Math, asked by najahaven, 8 hours ago

please provide step by step answer class 10 maths​

Attachments:

Answers

Answered by subhalaxmi2003guddy
2

Answer:

x = a^2 , y = b^2

Step-by-step explanation:

I hope you will get it...

please add my answer as brainlist.....

THANK YOU

Attachments:
Answered by BlessedOne
9

Given :

The given system of linear equation -

⠀⠀⠀⌬ \sf\:\frac{x}{a}+\frac{y}{b}=a+b

⠀⠀⠀⌬ \sf\:\frac{x}{a^{2}}+\frac{y}{b^{2}}=2

To find :

  • Value of x and y.

Assumption :

Let -

⠀⠀⠀⌬ \sf\:\frac{x}{a}+\frac{y}{b}=a+b⠀⠀⠀ \small{\mathfrak\gray{[~equ^{n}~1~]}}

⠀⠀⠀⌬ \sf\:\frac{x}{a^{2}}+\frac{y}{b^{2}}=2⠀⠀⠀⠀ \small{\mathfrak\gray{[~equ^{n}~2~]}}

Solution :

Taking equation 1 and multiplying it by 1/a , we get -

\large\sf\:(\frac{x}{a}+\frac{y}{b}=a+b) \bf\:\times \frac{1}{a}

\large\sf\implies\:\frac{x}{a} \times \frac{1}{a}+\frac{y}{b} \times \frac{1}{a}=(a+b) \times \frac{1}{a}

\large\sf\implies\:\frac{x}{a^{2}}+\frac{y}{ab}=\frac{a+b}{a}

Let -

⠀⠀⠀⌬ \sf\:\frac{x}{a^{2}}+\frac{y}{ab}=\frac{a+b}{a}⠀⠀⠀ \small{\mathfrak\gray{[~equ^{n}~3~]}}

Subtracting equation 2 and equation 3 , we get -

\large\sf\implies\:(\frac{x}{a^{2}}+\frac{y}{b^{2}})-(\frac{x}{a^{2}}+\frac{y}{ab})=2-\frac{a+b}{a}

\large\sf\implies\:\frac{x}{a^{2}}+\frac{y}{b^{2}}-\frac{x}{a^{2}}-\frac{y}{ab}=2-\frac{a+b}{a}

\large\sf\implies\:\frac{x}{a^{2}}-\frac{x}{a^{2}}+\frac{y}{b^{2}}-\frac{y}{ab}=2-\frac{a+b}{a}

\large\sf\implies\:\cancel{\frac{x}{a^{2}}}-\cancel{\frac{x}{a^{2}}}+\frac{y}{b^{2}}-\frac{y}{ab}=2-\frac{a+b}{a}

\large\sf\implies\:\frac{y}{b^{2}}-\frac{y}{ab}=2-\frac{a+b}{a}

\large\sf\implies\:\frac{y}{b}(\frac{1}{b}-\frac{1}{a})=\frac{2a-a-b}{a}

\large\sf\implies\:\frac{y}{b}(\frac{a-b}{ab})=\frac{a-b}{a}

\large\sf\implies\:\frac{y}{b}=\frac{\frac{a-b}{a}}{\frac{a-b}{ab}}

\large\sf\implies\:\frac{y}{b}=\frac{a-b}{a} \times \frac{ab}{a-b}

\large\sf\implies\:\frac{y}{b}=\frac{\cancel{a-b}}{a} \times \frac{ab}{\cancel{a-b}}

\large\sf\implies\:\frac{y}{b}=\frac{1}{a} \times \frac{ab}{1}

\large\sf\implies\:\frac{y}{b}=\frac{ab}{a}

\large\sf\implies\:\frac{y}{b}=\frac{\cancel{a}b}{\cancel{a}}

\large\sf\implies\:\frac{y}{b}=\frac{b}{1}

\small{\underline{\boxed{\mathrm{\implies\:y~=~b^{2}}}}} \bf\color{red}{⋆}

Substituting the value of y in equation 2 , we get -

\large\sf\:\frac{x}{a^{2}}+\frac{y}{b^{2}}=2

\large\sf\implies\:\frac{x}{a^{2}}+\frac{b^{2}}{b^{2}}=2

\large\sf\implies\:\frac{x}{a^{2}}+\cancel{\frac{b^{2}}{b^{2}}}=2

\large\sf\implies\:\frac{x}{a^{2}}+1=2

\large\sf\implies\:\frac{x+a^{2}}{a^{2}}=2

\small\sf\implies\:x+a^{2}=2 \times a^{2}

\small\sf\implies\:x+a^{2}=2a^{2}

\small\sf\implies\:x=2a^{2}-a^{2}

\small{\underline{\boxed{\mathrm{\implies\:x~=~a^{2}}}}} \bf\color{red}{⋆}

\bf\therefore~The~value~of~x~is~a^{2}~and~y~is~b^{2}.

════════════════════‎

Verification :

Plugging the value of x and y in equation 1 -

\large\sf\:\frac{x}{a}+\frac{y}{b}=a+b

\large\sf\leadsto\:\frac{a^{2}}{a}+\frac{b^{2}}{b}=a+b

\large\sf\leadsto\:\frac{a^{2}b+ab^{2}}{ab}=a+b

\small\sf\leadsto\:a^{2}b+ab^{2}=ab(a+b)

\small\sf\leadsto\:a^{2}b+ab^{2}=a^{2}b+ab^{2}

\bf\leadsto\:LHS~=~RHS

Hence Verified ~

════════════════════‎

Similar questions