Math, asked by pushkarkwatra2, 3 months ago

please Rationalise the denominator​

Attachments:

Answers

Answered by Anonymous
4

Answer :-

\implies\sf \dfrac{1}{\sqrt3 - \sqrt2 + 1}

\implies\sf \dfrac{1}{\sqrt3 - \sqrt2 + 1} \times \dfrac{\sqrt3 - \sqrt2 - 1}{\sqrt3 - \sqrt2 - 1}

\implies\sf \dfrac{\sqrt3 - \sqrt2 - 1}{(\sqrt3 - \sqrt2 + 1)({\sqrt3 - \sqrt2 - 1}) }

  • (a + b)(a - b) = a² - b²

\implies\sf \dfrac{\sqrt3 - \sqrt2 - 1}{(\sqrt3 - \sqrt2)^2 - (1 )^2}

  • (a - b)² = a² - 2ab + b²

\implies\sf \dfrac{\sqrt3 - \sqrt2 - 1}{(\sqrt3 - \sqrt2)^2 - (1 )^2}

\implies\sf \dfrac{\sqrt3 - \sqrt2 - 1}{3 + 2 - 2\sqrt6 - 1}

\implies\sf \dfrac{\sqrt3 - \sqrt2 - 1}{4 - 2\sqrt6}

\implies\sf \dfrac{\sqrt3 - \sqrt2 - 1}{4 - 2\sqrt6} \times \dfrac{4 + 2\sqrt6}{4 + 2\sqrt6}

\implies\sf \dfrac{(\sqrt3 - \sqrt2 - 1)(4 + 2\sqrt6) }{(4 -2\sqrt6)(4+2\sqrt6)}

\implies\sf \dfrac{4 (\sqrt3 - \sqrt2 - 1) + 2\sqrt6(\sqrt3 - \sqrt2 - 1)}{4^2 - 4\times 6}

\implies\sf \dfrac{4\sqrt3 - 4\sqrt2 - 4 + 6\sqrt2 - 4\sqrt3 + 2\sqrt6}{16 - 24}

\implies\sf \dfrac{2\sqrt2 - 4 - 2\sqrt6}{-8}

\implies\sf \dfrac{-2(2 - \sqrt2 + \sqrt6)}{-8}

\implies\boxed{\sf \dfrac{ 2 + \sqrt6 - \sqrt2}{4}}

Similar questions