Math, asked by Anonymous, 1 month ago

Please Rationalise the denominator.


~No spam
~ Please help​

Attachments:

Answers

Answered by itzPapaKaHelicopter
3

 \textbf{Given:}  \:  \frac{7 \sqrt{3}  - 5 \sqrt{2} }{ \sqrt{48}  +  \sqrt{18} }

\sf \colorbox{pink} {Solution:}

⇒\frac{7 \sqrt{3}  - 5 \sqrt{2} }{ \sqrt{48}  +  \sqrt{18} }

 =   \frac{7 \sqrt{3} - 5 \sqrt{2}  }{4 \sqrt{3}  + 3 \sqrt{2} }  \times  \frac{4 \sqrt{3}  - 3 \sqrt{2} }{4 \sqrt{3} - 3 \sqrt{2}  }

 =  \frac{(7 \sqrt{3}  - 5 \sqrt{2}  )(4 \sqrt{3} - 3 \sqrt{2} ) }{(4 \sqrt{3} + 3 \sqrt{2} )(4 \sqrt{3}  - 3 \sqrt{2})  }

 =  \frac{7 \sqrt{3} (4 \sqrt{3}  - 3 \sqrt{2}) - 5 \sqrt{2}  (4 \sqrt{3}  - 3 \sqrt{2}) }{(4 \sqrt{3}  {)}^{2} - (3 \sqrt{2}  {)}^{2}  }

 =  \frac{24 - 21 \sqrt{6}  - 2 0 \sqrt{6}   + 30}{48 - 18}

 =  \frac{114 - 41 \sqrt{6} }{30}

 \\  \\  \\  \\  \\  \\ \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸}

Similar questions