Math, asked by dksreekamali, 9 months ago

please refer picture for question help me for answer​

Attachments:

Answers

Answered by whoamankumar
1

Answer:

-1

Step-by-step explanation:

x = a cos○

y= a sin○

differentiating both with d○

dx = d a cos○ = -asin○

___ __________

d○ d○

dy = d a sin○ = a cos○

___ ___________

d○ d○

NOW dy/dx

dy a cos○ cos○

___ = _________ =_____ = -cot○

dx - a sin○ -sin○

At ○ = pi /4

pi

-cot __= -1

4

Answered by BrainlyPopularman
1

Question :

If  \: \: \: { \bold{x = a \cos( \theta)  \:  \: and \:  \: y   = a \sin( \theta) }}  then find

{ \bold{ \dfrac{dy}{dx}  \:  \: at \:  \:  \theta  =  \dfrac{\pi}{4} }} \\

ANSWER :

▪︎  \to{ \bold{ [(\frac{dy}{dx})  _{ \theta =  \frac{\pi}{4} }]=   - 1  }} \\

EXPLANATION :

GIVEN :

▪︎  { \bold{x = a \cos( \theta)  \:  \: and \:  \: y   = a \sin( \theta) }} \\

TO FIND :

▪︎ { \bold{ \dfrac{dy}{dx}  \:  \: at \:  \:  \theta  =  \dfrac{\pi}{4} }} \\

SOLUTION :

 \implies{ \bold{y \:  = a \sin( \theta) }}

Now Let's Differentiate 'y' with respect to { \bold{ \theta}}

  \\ \implies{ \bold{ \dfrac{dy}{d \theta}  = a \cos( \theta) }} \\

 \implies{ \bold{x\:  = a \cos( \theta) }}

• Now Let's Differentiate 'x' with respect to { \bold{ \theta}}

  \\ \implies{ \bold{ \dfrac{dx}{d \theta}  = -  a \sin( \theta) }} \\

  { \bold{ \dfrac{dy}{dx}  = \frac{ \frac{dy}{d \theta} }{ \frac{dx}{d \theta} } }} \\

  \\ \implies{ \bold{ \dfrac{dy}{dx}  = \frac{a \cos( \theta) }{ - a \sin( \theta) } }} \\

  \\ \implies{ \bold{ \dfrac{dy}{dx}  =  -  \cot( \theta)  }} \\

▪︎ Now put { \bold{ \theta =  \dfrac{\pi}{4} }}

 \\ \implies{ \bold{ [(\frac{dy}{dx})  _{ \theta =  \frac{\pi}{4} }]=   -  \cot( \frac{\pi}{4} )  }} \\

  \\ \implies{ \bold{ [(\frac{dy}{dx})  _{ \theta =  \frac{\pi}{4} }]=   - 1  }} \\

Hence , Option (d) is correct.

Similar questions