Math, asked by muskan2807, 4 months ago

please refer the attachment and solve it ​

Attachments:

Answers

Answered by anindyaadhikari13
5

Required Answer:-

Given:

 \rm \mapsto \sin(x)  +  { \sin}^{2}(x) +  { \sin}^{3}(x) = 1

To find:

 \rm \cos^{6} (x) - 4 \cos^{4} (x)  + 8 { \cos}^{2} (x) = ?

Solution:

Given,

 \rm \sin(x)  +  { \sin}^{2}(x) +  { \sin}^{3}(x) = 1

 \rm \implies \sin(x)  +  { \sin}^{3}(x)  = 1 -   { \sin}^{2}(x)

 \rm \implies \sin(x) \{1  +  { \sin}^{2}(x) \} = 1 -   { \sin}^{2}(x)

We know that,

 \rm { \sin}^{2}(x) +  { \cos}^{2} (x) = 1

 \rm \implies { \sin}^{2}(x)  = 1 -  { \cos}^{2} (x)

 \rm  \implies { \cos}^{2} (x) = 1 -  { \sin}^{2}(x)

Therefore,

 \rm \implies \sin(x) \{1  +  { \sin}^{2}(x) \} =  { \cos}^{2} (x)

 \rm \implies \sin(x) \{1  + 1 -  { \cos}^{2}(x) \} =  { \cos}^{2} (x)

 \rm \implies \sin(x) \{2-  { \cos}^{2}(x) \} =  { \cos}^{2} (x)

On squaring both sides, we get,

 \rm \implies \sin^{2}(x) \{2-  { \cos}^{2}(x) \}^{2}  =  { \cos}^{4} (x)

 \rm \implies(1 -  \cos^{2}(x) )\{2-  { \cos}^{2}(x) \}^{2}  =  { \cos}^{4} (x)

 \rm \implies(1 -  \cos^{2}(x) )\{ {2}^{2} + { \cos}^{4}(x) - 4 \cos ^{4} (x) \}  =  { \cos}^{4} (x)

 \rm \implies(1 -  \cos^{2}(x) )\{4 + { \cos}^{4}(x) - 4 \cos ^{2} (x) \}  =  { \cos}^{4} (x)

 \rm \implies 4 +  { \cos}^{4}(x) - 4 { \cos}^{2}(x) - 4 { \cos}^{2} (x) -  { \cos }^{6} (x) + 4 { \cos }^{4} (x) =  { \cos}^{4}(x)

 \rm \implies 4 + -  8{ \cos}^{2} (x) -  { \cos }^{6} (x) + 4 { \cos }^{4} (x) = 0

 \rm \implies 8{ \cos}^{2} (x)  + { \cos }^{6} (x) - 4 { \cos }^{4} (x) = 4

 \rm \implies { \cos }^{6} (x) - 4 { \cos }^{4} (x)  + 8 { \cos}^{2}(x) = 4

Hence, Required Answer is 4.

Answer:

 \rm { \cos }^{6} (x) - 4 { \cos }^{4} (x)  + 8 { \cos}^{2}(x) = 4

Formula Used:

 \rm \mapsto { \sin}^{2}(x) +  { \cos}^{2} (x) = 1

Answered by Anisha5119
4

Step-by-step explanation:

ANSWER IS 4...................

Attachments:
Similar questions