Math, asked by aditiss, 8 months ago

please refer to attachment and answer the question
no spam​

Attachments:

Answers

Answered by ANSHUMAN65306
7

here is yur answer ...

hope it will help u

Attachments:
Answered by prince5132
28

GIVEN :-

 \\  \bigstar \:  \displaystyle \sf  \dfrac{\tan ^{2} 60 ^{ \circ}  + 4 \cos ^{2} 45^{ \circ}   + 3 \sec ^{2} 30^{ \circ}   + 5 \cos ^{2} 90^{ \circ} }{ \csc30^{ \circ}   +  \sec60^{ \circ}   -  \cot ^{2} 30^{ \circ}  } \\  \\

TO FIND :-

 \\  \bigstar \:  \displaystyle \sf \: value \: of \:  \:   \dfrac{\tan ^{2} 60 ^{ \circ}  + 4 \cos ^{2} 45^{ \circ}   + 3 \sec ^{2} 30^{ \circ}   + 5 \cos ^{2} 90^{ \circ} }{ \csc30^{ \circ}   +  \sec60^{ \circ}   -  \cot ^{2} 30^{ \circ}  } \\  \\

SOLUTION :-

 \\ \\ \begin{gathered}\bullet\:\sf Trigonometric\:Values :\\\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D{e}fined\end{tabular}}\end{gathered} \\ \\

 \underline{\boldsymbol{According\: to \:the\: Question\:now :}} \\

 \\  \\ :  \implies \displaystyle \sf  \dfrac{\tan ^{2} 60 ^{ \circ}  + 4 \cos ^{2} 45^{ \circ}   + 3 \sec ^{2} 30^{ \circ}   + 5 \cos ^{2} 90^{ \circ} }{ \csc30^{ \circ}   +  \sec60^{ \circ}   -  \cot ^{2} 30^{ \circ}  } \\  \\  \\

  \displaystyle \sf :  \implies \dfrac{( \sqrt{3}) ^{2}   + 4 \times  \bigg(\dfrac{1}{ \sqrt{2} } \bigg) ^{2}   + 3 \times  \bigg( \dfrac{2}{ \sqrt{3} }   \bigg) ^{2} + 5 \times (0) ^{2}  }{2 + 2 -  (\sqrt{3}) ^{2}  } \\  \\  \\

 :  \implies \displaystyle \sf \dfrac{3 + 4 \times  \dfrac{1}{2}  + 3 \times  \dfrac{4}{3} + 5 \times 0 }{4 -  (\sqrt{3}) ^{2}  }  \\  \\  \\

:  \implies \displaystyle \sf  \frac{3 + 2 \times 1 + 4}{4 - 3}  \\  \\  \\

:  \implies \displaystyle \sf   \frac{3 + 2 + 4}{1}  \\  \\  \\

    \bigstar \:\underline{ \boxed{\displaystyle \sf \dfrac{\tan ^{2} 60 ^{ \circ}  + 4 \cos ^{2} 45^{ \circ}   + 3 \sec ^{2} 30^{ \circ}   + 5 \cos ^{2} 90^{ \circ} }{ \csc30^{ \circ}   +  \sec60^{ \circ}   -  \cot ^{2} 30^{ \circ}  }  = 9 } } \\  \\

 \therefore \underline{\displaystyle \sf \: Required  \: answer  \: is  \: 9 .\: }


ButterFliee: Perfect (✯ᴗ✯)
Similar questions