Math, asked by zebanzm, 10 months ago

Please refer to attachment below — having a hard time answering this one.

Attachments:

Answers

Answered by VishnuPriya2801
18

Answer:-

Given:

a + b + c = 5 -- equation (1)

ab + bc + ca = 10 -- equation (2)

We know that,

a³ + b³ + c³ - 3abc = (a² + b² + c² - ab - bc - ca)(a + b + c)

=> (5)[a² + b² + c² -(ab + bc + ca)]

Again , a² + b² + c² = (a + b + c)² - 2(ab +

bc + ca)

Substitute the values,

=> a² + b² + c² = (5)² - 2(10) = 25 - 10

=> a² + b² + c² = 5

=> a³ + b³ + c³ - 3abc = 5(5 - 10)

=> a³ + b³ + c³ - 3abc = - 25

Hence, proved.

Answered by ItzShinyQueen13
6

\huge {\bigstar{\mathfrak\red {Answer:}}}

Step-by-step explanation:

 We \: are \: given, \:  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: a + b + c = 5 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:ab + bc + ca = 10 \\  \\ a + b + c = 5 \\ ⇒ {(a + b + c)}^{2}  =  {5}^{2}  \\  ⇒{a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca = 25 \\ ⇒ {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca) = 25 \\ ⇒ {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2 \times 10 = 25 \\ ⇒ {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 20 = 25 \\ ⇒ {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 25 - 20 \\ ⇒ {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 5 \\  \\A s \: we \: know \: that, \\  \\  {a}^{3}  +  {b}^{3}  +  {c}^{3} - 3 abc = ( a+  b+ c)( {a}^{2} +   {b}^{2} +   {c}^{2}  - ab - bc - ca) \\ ⇒ {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = (a + b + c)({a}^{2}  +  {b}^{2}  +  {c}^{2}  - (ab + bc + ca)) \\ ⇒ {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = 5 \times (5 - 10) \\ ⇒ {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc = 5 \times ( - 5) \\∴ {a}^{3}  +  {b}^{3}  +  {c}^{3}  - abc =  - 25 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  [Hence  \: Proved ]

\\\\

✿ ✿ Hope it helps you. ✿ ✿

☆ ☆ Plz Plz Follow me and mark as brainliest. ☆ ☆

Similar questions