Math, asked by leetoleeto071, 14 days ago

Please refer to the pic

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

u =  {x}^{y}  \\

   \implies \:  \frac{ \partial{u}}{ \partial{x}}  = y .{x}^{y - 1}  \\

   \implies \:   \frac{ \partial}{ \partial{x}} \bigg( \frac{ \partial{u}}{ \partial{x}} \bigg)  = y(y - 1) .{x}^{y - 2}  \\

   \implies \: \frac{ \partial^{2} {u}}{ \partial{x} ^{2} }  = y(y - 1) .{x}^{y - 2}  \\

   \implies \:  \frac{ \partial}{ \partial{y}}  \bigg(\frac{ \partial^{2} {u}}{ \partial{x} ^{2} } \bigg)  = y(y - 1) .{x}^{y - 2}  \\

   \implies \:  \frac{ \partial}{ \partial{y}}  \bigg(\frac{ \partial^{2} {u}}{ \partial{x} ^{2} } \bigg)  = (y - 1) .{x}^{y - 2}  + y. {x}^{y - 2}  + y(y - 1) {x}^{y - 2}. \ln(x)  \\

   \implies \:  \frac{ \partial^{3} {u}}{ \partial{x} ^{2} \partial{y} }  =  \{(y - 1)  + y  + y(y - 1). \ln(x) \}. {x}^{y - 2} \\

   \implies \:  \frac{ \partial^{3} {u}}{ \partial{x} ^{2} \partial{y} }  =  \{y - 1  + y  + ( {y}^{2} - y). \ln(x) \}. {x}^{y - 2} \\

   \implies \:  \frac{ \partial^{3} {u}}{ \partial{x} ^{2} \partial{y} }  =  \{2y - 1   + ( {y}^{2} - y). \ln(x) \}. {x}^{y - 2} \\

Now,

   \implies \:  \frac{ \partial{u}}{ \partial{x}}  = y .{x}^{y - 1}  \\

   \implies \:   \frac{ \partial}{ \partial{y}} \bigg( \frac{ \partial{u}}{ \partial{x}}  \bigg) = {x}^{y - 1} + y .{x}^{y - 1} . \ln(x)  \\

   \implies \:   \frac{ \partial^{2} {u}  }{ \partial{x} \partial{y}}  = {x}^{y - 1} + y .{x}^{y - 1} . \ln(x)  \\

   \implies \:    \frac{ \partial}{ \partial{x}}   \bigg(\frac{ \partial^{2} {u}  }{ \partial{x} \partial{y}} \bigg)  = (y - 1){x}^{y - 2} + y (y - 1).{x}^{y - 2} . \ln(x)  + y. {x}^{y - 1}. \frac{1}{x}   \\

   \implies \: \frac{ \partial^{3} {u}  }{ \partial{x} \partial{y} \partial{x}}  = (y - 1){x}^{y - 2} + y (y - 1).{x}^{y - 2} . \ln(x)  + y. {x}^{y - 2}  \\

   \implies \: \frac{ \partial^{3} {u}  }{ \partial{x} \partial{y} \partial{x}}  =  \{(y - 1) + y (y - 1). \ln(x)  + y \}.{x}^{y - 2} \\

   \implies \: \frac{ \partial^{3} {u}  }{ \partial{x} \partial{y} \partial{x}}  =  \{y - 1+  (y^{2}  - y). \ln(x)  + y \}.{x}^{y - 2} \\

   \implies \: \frac{ \partial^{3} {u}  }{ \partial{x} \partial{y} \partial{x}}  =  \{2y - 1+  (y^{2}  - y). \ln(x)  \}.{x}^{y - 2} \\

Hence,

 \frac{ \partial^{3}{u} }{ \partial{ {x}^{2} } \partial{y}} = \frac{ \partial^{3}{u} }{ \partial{x } \partial{y} \partial{x}}  \\

Similar questions