Math, asked by Kedar657, 2 months ago

please refer to the picture and answer and also send a picture of your answer because its easy to understand thats why ​

Attachments:

Answers

Answered by LiXiFeng
2

 \large \sf {\red {\frac{  \sqrt{ 5  }  + \sqrt{ 3  }    }{  \sqrt{ 80  }  + \sqrt{ 48  }  - \sqrt{ 45  }  - \sqrt{ 27  }    }}}

  • Factor 80=4^{2}\times 5.Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.

 \:

 \sf \: \frac{\sqrt{5}+\sqrt{3}}{4\sqrt{5}  + \sqrt{48}-\sqrt{45}-\sqrt{27}}

  • Factor 48=4^{2}\times 3.Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}.Take the square root of 4^{2}.

 \:

 \sf \: \frac{\sqrt{5}+\sqrt{3}}{4\sqrt{5}+4\sqrt{3}-\sqrt{45}-\sqrt{27}}

  • Factor 45=3^{2}\times 5.Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.

 \:

 \sf \: \frac{\sqrt{5}+\sqrt{3}}{4\sqrt{5}+4\sqrt{3}-3\sqrt{5}-\sqrt{27}}

 \:

 \sf \: \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+4\sqrt{3}-\sqrt{27}}

  • Factor 27=3^{2}\times 3.. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}.Take the square root of 3^{2}.

 \:

 \sf \: \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+4\sqrt{3}-3\sqrt{3}}

 \:

 \sf \: \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}

 \:

1

\large \frak{@LiXiFeng}

Similar questions