Math, asked by nisant18, 3 months ago

please reply fast. fast​

Attachments:

Answers

Answered by mathdude500
2

Dimensions of pit :-

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{length \: of \: pit = 10 \: m} \\ &\sf{breadth \: of \: pit \:  = 10 \: m}\\ &\sf{height \: of \: pit \:  = 5 \: m} \end{cases}\end{gathered}\end{gathered}

Dimensions of field :-

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{Length \: of \: field \:  = 30 \: m} \\ &\sf{Breadth \: of \: field \:  = 20 \: m} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{rise \: in \: the \: level \: of \: field}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{{\underline{Formula \:  Used \::}}}}  \end{gathered}

{\red\bigstar\: { \boxed{{\bold\green{Volume_{(Cuboid)}\:\ = \: Length \times Breadth \times height }}}}}

{\red\bigstar\: { \boxed{{\bold\purple{Area_{(rectangle)}\:\ = Length \times Breadth }}}}} \:

{\red\bigstar\: { \boxed{{\bold\pink{\:height  \:  = \dfrac{Volume_{(Cuboid)}}{\:Base  \: Area} }}}}} \:

\large\underline\purple{\bold{Solution :-  }}

Dimensions of pit :-

:⟹ ★Length = 10 m

:⟹ ★Breadth = 10 m

:⟹ ★Depth = 5 m

 \tt \:Volume \:  of \:  the \:  earth  \: dug \:  out =  \: Volume \: of \: pit

\tt \: Volume \:  of  \: the \:  earth \:  dug  \: out =  \: 10 \times 10 \times 5

 \boxed{ \red{\tt \: Volume \:  of  \: the \:  earth \:  dug  \: out = \: 500 \:  {m}^{3} }}

Now,

 \tt \: Area_{(field)} \:  =  \: 30  \times 20 = 600 \:  {m}^{2}

 \tt \: Area_{(pit)} \:  =  \: 10 \times 10 = 100 \:  {m}^{2}

So,

 \tt \: Area_{(remaining \: field)} \:  = Area_{(field)} \:  -  \: Area_{(pit)}

\tt \: Area_{(remaining \: field)} \:  =600 - 100

 \implies \boxed{ \red{\tt \: Area_{(remaining \: field)} \:  = \: 500 \:  {m}^{2} }}

:⟹ ★Let rise in level of the field be 'h' m.

:⟹ ★So, rise in level is given by

 \bf \: height \:  = \dfrac{\red{\tt \: Volume \:  of  \: the \:  earth \:  dug  \: out}}{ \red{\tt \: Area_{(remaining \: field)} \: }}

:  \implies  \bf \: h \:  = \dfrac{500}{500}

:  \implies  \boxed{ \purple{ \bf \: h \:  =  \: 1 \: m}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information

Cuboid :-

  • l = Length of Cuboid
  • b = Breadth of Cuboid
  • h = Height of Cuboid
  • Volume = l × b × h
  • Curved Surface Area = 2 × (l + b) × h
  • Total Surface Area = 2 × (l×b + b×h + h×l)
  • Perimeter of Cuboid = 4 × (l + b + h)

Cube :-

  • Volume = (side)³
  • Curved Surface Area = 4 × (side)²
  • Total Surface Area = 6 × (side)²
  • Perimeter of cube = 12 × side

Similar questions